TY - JOUR A1 - Wutzler, Bianca A1 - Hudson, Paul A1 - Thieken, Annegret T1 - Adaptation strategies of flood-damaged businesses in Germany JF - Frontiers in water N2 - Flood risk management in Germany follows an integrative approach in which both private households and businesses can make an important contribution to reducing flood damage by implementing property-level adaptation measures. While the flood adaptation behavior of private households has already been widely researched, comparatively less attention has been paid to the adaptation strategies of businesses. However, their ability to cope with flood risk plays an important role in the social and economic development of a flood-prone region. Therefore, using quantitative survey data, this study aims to identify different strategies and adaptation drivers of 557 businesses damaged by a riverine flood in 2013 and 104 businesses damaged by pluvial or flash floods between 2014 and 2017. Our results indicate that a low perceived self-efficacy may be an important factor that can reduce the motivation of businesses to adapt to flood risk. Furthermore, property-owners tended to act more proactively than tenants. In addition, high experience with previous flood events and low perceived response costs could strengthen proactive adaptation behavior. These findings should be considered in business-tailored risk communication. KW - risk management KW - climate change adaptation KW - floods KW - disaster risk KW - reduction KW - Germany KW - precaution KW - emergency management Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.932061 SN - 2624-9375 VL - 4 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Wirth, Jonas A1 - Neumann, Rainer A1 - Antonietti, Markus A1 - Saalfrank, Peter T1 - Adsorption and photocatalytic splitting of water on graphitic carbon nitride BT - a combined first principles and semiempirical study JF - physical chemistry, chemical physics : PCCP N2 - Graphitic carbon nitride, g-C₃N₄, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C₃N₄ by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H⁺ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H₂ production O₂ evolution is only possible in the presence of oxidation cocatalysts. KW - initio molecular-dynamics KW - augmented-wave method KW - visible-light KW - tight-binding KW - transition KW - oxidation KW - photooxidation KW - simulations KW - reduction KW - hydrogen Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02021a SN - 1463-9076 SN - 1463-9084 VL - 2014 IS - 16 SP - 15917 EP - 15926 ER -