TY - JOUR A1 - Heckenbach, Esther Lina A1 - Brune, Sascha A1 - Glerum, Anne C. A1 - Bott, Judith T1 - Is there a speed limit for the thermal steady-state assumption in continental rifts? JF - Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences N2 - The lithosphere is often assumed to reside in a thermal steady-state when quantitatively describing the temperature distribution in continental interiors and sedimentary basins, but also at active plate boundaries. Here, we investigate the applicability limit of this assumption at slowly deforming continental rifts. To this aim, we assess the tectonic thermal imprint in numerical experiments that cover a range of realistic rift configurations. For each model scenario, the deviation from thermal equilibrium is evaluated. This is done by comparing the transient temperature field of every model to a corresponding steady-state model with an identical structural configuration. We find that the validity of the thermal steady-state assumption strongly depends on rift type, divergence velocity, sampling location, and depth within the rift. Maximum differences between transient and steady-state models occur in narrow rifts, at the rift sides, and if the extension rate exceeds 0.5-2 mm/a. Wide rifts, however, reside close to thermal steady-state even for high extension velocities. The transient imprint of rifting appears to be overall negligible for shallow isotherms with a temperature less than 100 degrees C. Contrarily, a steady-state treatment of deep crustal isotherms leads to an underestimation of crustal temperatures, especially for narrow rift settings. Thus, not only relatively fast rifts like the Gulf of Corinth, Red Sea, and Main Ethiopian Rift, but even slow rifts like the Kenya Rift, Rhine Graben, and Rio Grande Rift must be expected to feature a pronounced transient component in the temperature field and to therefore violate the thermal steady-state assumption for deeper crustal isotherms. KW - basin analysis KW - geodynamics KW - numerical modeling KW - rifting KW - thermal KW - modeling Y1 - 2021 U6 - https://doi.org/10.1029/2020GC009577 SN - 1525-2027 VL - 22 IS - 3 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Zhou, Renjie A1 - Schoenbohm, Lindsay M. A1 - Sobel, Edward A1 - Carrapa, Barbara A1 - Davis, Donald W. T1 - Sedimentary record of regional deformation and dynamics of the thick-skinned southern Puna Plateau, central Andes (26-27 degrees S) JF - Earth & planetary science letters N2 - The Puna Plateau, adjacent Eastern Cordillera and the Sierras Pampeanas of the central Andes are largely characterized by thick-skinned, basement-involved deformation. The Puna Plateau hosts similar to N-S trending bedrock ranges bounded by deep-seated reverse faults and sedimentary basins. We contribute to the understanding of thick-skinned dynamics in the Puna Plateau by constraining regional kinematics of the poorly understood southern Puna Plateau through a multidisciplinary approach. On the southeastern plateau, sandstone modal composition and detrital zircon U-Pb and apatite fission-track data from Cenozoic strata indicate basin accumulation during the late Eocene to early Oligocene (similar to 38-28 Ma). Provenance analysis reveals the existence of a regional-scale basin covering the southern Puna Plateau during late Eocene to early Oligocene time (similar to 38-28 Ma) that was sourced from both the western plateau and the eastern plateau margin and had a depocenter located to the west. Petrographic and detrital zircon U-Pb data reveal erosion of proximal western and eastern sources after 12 Ma, in mid-late Miocene time. This indicates that the regional basin was compartmentalized into small-scale depocenters by the growth of basement-cored ranges continuing into the late Miocene (similar to 12-8 Ma). We suggest that the Cenozoic history of the southern Puna Plateau records the formation of a regional basin that was possibly driven by lithospheric flexure during the late Eocene to early Oligocene, before the growth of distributed basement-cored ranges starting as early as the late Oligocene. (C) 2015 Elsevier B.V. All rights reserved. KW - Puna Plateau KW - regional deformation KW - basin analysis KW - thick-skinned deformation KW - zircon U-Pb geochronology KW - apatite fission-track thermochronology Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2015.11.012 SN - 0012-821X SN - 1385-013X VL - 433 SP - 317 EP - 325 PB - Elsevier CY - Amsterdam ER -