TY - JOUR A1 - Witzorky, Christoph A1 - Paramonov, Guennaddi A1 - Bouakline, Foudhil A1 - Jaquet, Ralph A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Gaussian-type orbital calculations for high harmonic generation in vibrating molecules BT - Benchmarks for H-2(+) JF - Journal of chemical theory and computation N2 - The response of the hydrogen molecular ion, H-2(+), to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrodinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequency response, in general, can be reliably modeled using Gaussian-type basis sets for the electrons for not too high harmonics. Further, nuclear motion destroys electronic coherences in the response spectra even on the time scale of about 30 fs and affects HHG intensities, which reflect the electron dynamics occurring on the attosecond time scale. For the present system, non-Born-Oppenheimer effects are small. The Gaussian-based, nonadiabatically coupled, time-dependent multisurface approach to treat quantum electron-nuclear motion beyond the non-Born-Oppenheimer approximation can be easily extended to approximate wavefunction methods, such as time-dependent configuration interaction singles (TD-CIS), for systems where no benchmarks are available. KW - Basis sets KW - Chemical calculations KW - Ionization KW - Lasers KW - Quantum mechanics Y1 - 2021 U6 - https://doi.org/10.1021/acs.jctc.1c00837 SN - 1549-9618 SN - 1549-9626 VL - 17 IS - 12 SP - 7353 EP - 7365 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Beitz, Toralf A1 - Panne, Ulrich A1 - Löhmannsröben, Hans-Gerd A1 - Riedel, Jens T1 - Microsecond mid-infrared laser pulses for atmospheric pressure laser ablation/ionization of liquid samples JF - Sensors and actuators : B, Chemical N2 - In many laser based ionization techniques with a subsequent drift time separation, the laser pulse generating the ions is considered as the start time to. Therefore, an accurate temporal definition of this event is crucial for the resolution of the experiments. In this contribution, the laser induced plume dynamics of liquids evaporating into atmospheric pressure are visualized for two distinctively different laser pulse widths, Delta t = 6 nanoseconds and Delta tau = 280 microseconds. For ns-pulses the expansion of the generated vapour against atmospheric pressure is found to lead to turbulences inside the gas phase. This results in spatial and temporal broadening of the nascent clouds. A more equilibrated expansion, without artificial smearing of the temporal resolution can, in contrast, be observed to follow mu s-pulse excitation. This leads to the counterintuitive finding that longer laser pulses results in an increased temporal vapour formation definition. To examine if this fume expansion also eventually results in a better definition of ion formation, the nascent vapour plumes were expanded into a linear drift tube ion mobility spectrometer (IMS). This time resolved detection of ion formation corroborates the temporal broadening caused by collisional impeding of the supersonic expansion at atmospheric pressure and the overall better defined ion formation by evaporation with long laser pulses. A direct comparison of the observed results strongly suggests the coexistence of two individual ion formation mechanisms that can be specifically addressed by the use of appropriate laser sources. KW - Laser ablation KW - Ion mobility spectrometry KW - Pulse duration KW - Plume KW - Ionization Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.06.155 SN - 0925-4005 VL - 238 SP - 298 EP - 305 PB - Elsevier CY - Lausanne ER -