TY - JOUR A1 - Niehoff, Ann-Christin A1 - Bauer, Oliver Bolle A1 - Kröger, Sabrina A1 - Fingerhut, Stefanie A1 - Schulz, Jacqueline A1 - Meyer, Sören A1 - Sperling, Michael A1 - Jeibmann, Astrid A1 - Schwerdtle, Tanja A1 - Karst, Uwe T1 - Quantitative Bioimaging to Investigate the Uptake of Mercury Species in Drosophila melanogaster JF - Analytical chemistry N2 - The uptake of mercury species in the model organism Drosophila melanogaster was investigated by elemental bioimaging using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The mercury distribution in Drosophila melanogaster was analyzed for the three species mercury(II) chloride, methylmercury chloride, and thimerosal after intoxication. A respective analytical method was developed and applied to the analysis of the entire Drosophila melanogaster first, before a particular focus was directed to the cerebral areas of larvae and adult flies. For quantification of mercury, matrix-matched standards based on gelatin were prepared. Challenges of spatially dissolved mercury determination, namely, strong evaporation issues of the analytes and an inhomogeneous distribution of mercury in the standards due to interactions with cysteine containing proteins of the gelatin were successfully addressed by complexation with meso-2,3-dimercaptosuccinic acid (DMSA). No mercury was detected in the cerebral region for mercury(II) chloride, whereas both organic species showed the ability to cross the blood brain barrier. Quantitatively, the mercury level in the brain exceeded the fed concentration indicating mercury enrichment, which was approximately 3 times higher for methylmercury chloride than for thimerosal. Y1 - 2015 U6 - https://doi.org/10.1021/acs.analchem.5b02500 SN - 0003-2700 SN - 1520-6882 VL - 87 IS - 20 SP - 10392 EP - 10396 PB - American Chemical Society CY - Washington ER -