TY - JOUR A1 - Landgraf, Angela A1 - Ballato, Paolo A1 - Strecker, Manfred A1 - Friedrich, Anke M. A1 - Tabatabaei, Saeid H. A1 - Shahpasandzadeh, Majid T1 - Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz mountains Iran : implications for fault-system evolution and interaction in a changing tectonic regime N2 - Neighbouring faults can interact, potentially link up and grow, and consequently increase the seismic and related natural hazards in their vicinity. Despite evidence of Quaternary faulting, the kinematic relationships between the neighbouring Mosha Fasham Fault (MFF) and the North Tehran Thrust (NTT) and their temporal evolution in the Alborz mountains are not well understood. The ENE-striking NTT is a frontal thrust that delimits the Alborz mountains to the south with a 2000 m topographic front with respect to the proximal Tehran plain. However, no large instrumentally recorded earthquakes have been attributed to that fault. In contrast, the sigmoidally shaped MFF is a major strike-slip fault, located within the Alborz Mountains. Sinistral motion along the eastern part of the MFF is corroborated by microseismicity and fault kinematic analysis, which documents recent transtensional deformation associated with NNE-SSW oriented shortening. To better understand the activity of these faults on different timescales, we combined fault- kinematic analysis and geomorphic observations, to infer the kinematic history of these structures. Our fault kinematic study reveals an early dextral shear for the NTT and the central MFF, responsible for dextral strike-slip and oblique reverse faulting during NW-oriented shortening. This deformation regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the NTT and the central-western MFF, sinistral strike-slip motion along subsidiary faults in the central MFF segment, and folding and tilting of Eocene to Miocene units in the MFF footwall. Continued thrusting along the NTT took place during the Quaternary. However, folding in the hanging wall and sinistral stream-offsets indicate a left-oblique component and Quaternary strike-slip reactivation of the eastern NTT- segment, close to its termination. This complex history of faulting under different stress directions has resulted in a composite landscape with inherited topographic signatures. Our study shows that the topography of the hanging wall of the NTT reflects a segmentation into sectors with semi-independent uplift histories. Areas of high topographic residuals and apparent high uplift underscore the fault kinematics. Combined, our data suggest an early mechanical linkage of the NTT and MFF fault systems during a former dextral transpressional stage, caused by NW-compression. During NE-oriented shortening, the NTT and MFF were reactivated and incorporated into a nascent transpressional duplex. The youngest manifestation of motion in this system is sinistral transtension. However, this deformation is not observed everywhere and has not yet resulted in topographic inversion. Y1 - 2009 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2009.04089.x SN - 0956-540X ER - TY - JOUR A1 - Toke, Nathan A. A1 - Arrowsmith, J. Ramon A1 - Rymer, Michael J. A1 - Landgraf, Angela A1 - Haddad, David E. A1 - Busch, Melanie A1 - Coyan, Joshua A1 - Hannah, Alexander T1 - Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California JF - Geology N2 - Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1 sigma) for the main trace of the San Andreas fault at Parkfield, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (similar to 35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the uppermost stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. Y1 - 2011 U6 - https://doi.org/10.1130/G31498.1 SN - 0091-7613 VL - 39 IS - 3 SP - 243 EP - 246 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Ballato, Paolo A1 - Uba, Cornelius Eji A1 - Landgraf, Angela A1 - Strecker, Manfred A1 - Sudo, Masafumi A1 - Stockli, Daniel F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Saeid H. T1 - Arabia-Eurasia continental collision insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran JF - Geological Society of America bulletin N2 - A poorly understood lag time of 15-20 m.y. exists between the initial Arabia-Eurasia continental collision in late Eocene to early Oligocene time and the acceleration of tectonic and sedimentary processes across the collision zone in the early to late Miocene. The late Eocene to Miocene-Pliocene clastic and shallow-marine sedimentary rocks of the Kond, Eyvanekey, and Semnan Basins in the Alborz Mountains (northern Iran) offer the possibility to track the evolution of this orogen in the framework of collision processes. A transition from volcaniclastic submarine deposits to shallow-marine evaporites and terrestrial sediments occurred shortly after 36 Ma in association with reversals in sediment provenance, strata tilting, and erosional unroofing. These events followed the termination of subduction arc magmatism and marked a changeover from an extensional to a contractional regime in response to initiation of continental collision with the subduction of stretched Arabian lithosphere. This early stage of collision produced topographic relief associated with shallow foreland basins, suggesting that shortening and tectonic loading occurred at low rates. Starting from the early Miocene (17.5 Ma), flexural subsidence in response to foreland basin initiation occurred. Fast sediment accumulation rates and erosional unroofing trends point to acceleration of shortening by the early Miocene. We suggest that the lag time between the initiation of continental collision (36 Ma) and the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving the "soft" collision of stretched lithosphere at first and "hard" collision following the arrival of unstretched Arabian continental litho sphere in the subduction zone. Y1 - 2011 U6 - https://doi.org/10.1130/B30091.1 SN - 0016-7606 VL - 123 IS - 1-2 SP - 106 EP - 131 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Haddad, David E. A1 - Zielke, Olaf A1 - Arrowsmith, J. Ramon A1 - Purvance, Matthew D. A1 - Haddad, Amanda G. A1 - Landgraf, Angela T1 - Estimating two-dimensional static stabilities and geomorphic settings of precariously balanced rocks from unconstrained digital photographs JF - Geosphere N2 - The need to accurately document the spatiotemporal distribution of earthquake-generated strong ground motions is essential for evaluating the seismic vulnerability of sites of critical infrastructure. Understanding the threshold for maximum earthquake-induced ground motions at such sites provides valuable information to seismologists, earthquake engineers, local agencies, and policymakers when determining ground motion hazards of seismically sensitive infrastructures. In this context, fragile geologic features such as precariously balanced rocks (PBRs) serve as negative evidence for earthquake-induced ground motions and provide important physical constraints on the upper limits of ground motions. The three-dimensional (3D) shape of a PBR is a critical factor in determining its static stability and thus susceptibility to toppling during strong ground shaking events. Furthermore, the geomorphic settings of PBRs provide important controls on PBR exhumation histories that are interpreted from surface exposure dating methods. In this paper, we present PBRslenderness, a MATLAB-based program that evaluates the two-dimensional (2D) static stabilities of PBRs from unconstrained digital photographs. The program's graphical user interface allows users to interactively digitize a PBR and calculates the 2D geometric parameters that define its static stability. A reproducibility study showed that our 2D calculations compare well against their counterparts that were computed in 3D (R-2 = 0.77-0.98 for 22 samples). A sensitivity study for single-user and multiuser digitization routines further confirmed the reproducibility of PBRslenderness estimates (coefficients of variation c(v) = 4.3%-6.5% for 100 runs; R-2 = 0.87-0.99 for 20 PBRs). We used PBRslenderness to analyze 261 PBRs in a low-seismicity setting to investigate the local geomorphic controls on PBR stability and preservation. PBRslenderness showed that a PBR's shape strongly controls its static stability and that there is no relationship between a PBR's stability and its geomorphic location in a drainage basin. However, the geomorphic settings of PBRs control their preservation potential by restricting their formation to hillslope gradients <40 degrees and the upper reaches of drainage basins. Such examples of our program's utility have led to its use in archival efforts of PBRs in southern California and Nevada, USA. Y1 - 2012 U6 - https://doi.org/10.1130/GES00788.1 SN - 1553-040X VL - 8 IS - 5 SP - 1042 EP - 1053 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Macaulay, Euan A. A1 - Sobel, Edward A1 - Mikolaichuk, Alexander A1 - Landgraf, Angela A1 - Kohn, Barry A1 - Stuart, Finlay T1 - Thermochronologic insight into late Cenozoic deformation in the basement-cored Terskey Range, Kyrgyz Tien Shan JF - Tectonics N2 - Basement-cored ranges formed by reverse faulting within intracontinental mountain belts are often composed of poly-deformed lithologies. Geological data capable of constraining the timing, magnitude, and distribution of the most recent deformational phase are usually missing in such ranges. In this paper, we present new low temperature thermochronological and geological data from a transect through the basement-cored Terskey Range, located in the Kyrgyz Tien Shan. Using these data, we are able to investigate the range's late Cenozoic deformation for the first time. Displacements on reactivated faults are constrained and deformation of thermochronologically derived structural markers is assessed. These structural markers postdate the earlier deformational phases, providing the only record of Cenozoic deformation and of the reactivation of structures within the Terskey Range. Overall, these structural markers have a southern inclination, interpreted to reflect the decreasing inclination of the reverse fault bounding the Terskey Range. Our thermochronological data are also used to investigate spatial and temporal variations in the exhumation of the Terskey Range, identifying a three-stage Cenozoic exhumation history: (1) virtually no exhumation in the Paleogene, (2) increase to slightly higher exhumation rates at similar to 26-20Ma, and (3) significant increase in exhumation starting at similar to 10Ma. KW - Thermochronology KW - Basement-cored ranges KW - Tien Shan KW - Structural geology Y1 - 2013 U6 - https://doi.org/10.1002/tect.20040 SN - 0278-7407 VL - 32 IS - 3 SP - 487 EP - 500 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Landgraf, Angela A1 - Zielke, Olaf A1 - Arrowsmith, J. Ramón A1 - Ballato, Paolo A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Sayyed-Hassan T1 - Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran JF - Journal of geophysical research : Earth surface N2 - The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex. KW - fault interaction KW - landscape evolution KW - numerical modeling KW - Alborz Mountains KW - Iran Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20109 SN - 2169-9003 SN - 2169-9011 VL - 118 IS - 3 SP - 1792 EP - 1805 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ballato, Paolo A1 - Stockli, Daniel F. A1 - Ghassemi, Mohammad R. A1 - Landgraf, Angela A1 - Strecker, Manfred A1 - Hassanzadeh, Jamshid A1 - Friedrich, Anke M. A1 - Tabatabaei, Saeid H. T1 - Accommodation of transpressional strain in the Arabia-Eurasia collision zone new constraints from (U-Th)/He thermochronology in the Alborz mountains, north Iran JF - Tectonics N2 - The Alborz range of N Iran provides key information on the spatiotemporal evolution and characteristics of the Arabia-Eurasia continental collision zone. The southwestern Alborz range constitutes a transpressional duplex, which accommodates oblique shortening between Central Iran and the South Caspian Basin. The duplex comprises NW-striking frontal ramps that are kinematically linked to inherited E-W-striking, right-stepping lateral to obliquely oriented ramps. New zircon and apatite (U-Th)/He data provide a high-resolution framework to unravel the evolution of collisional tectonics in this region. Our data record two pulses of fast cooling associated with SW-directed thrusting across the frontal ramps at similar to 18-14 and 9.5-7.5 Ma, resulting in the tectonic repetition of a fossil zircon partial retention zone and a cooling pattern with a half U-shaped geometry. Uniform cooling ages of similar to 7-6 Ma along the southernmost E-W striking oblique ramp and across its associated NW-striking frontal ramps suggests that the ramp was reactivated as a master throughgoing, N-dipping thrust. We interpret this major change in fault kinematics and deformation style to be related to a change in the shortening direction from NE to N/NNE. The reduction in the obliquity of thrusting may indicate the termination of strike-slip faulting (and possibly thrusting) across the Iranian Plateau, which could have been triggered by an increase in elevation. Furthermore, we suggest that similar to 7-6-m.y.-old S-directed thrusting predated inception of the westward motion of the South Caspian Basin. Citation: Ballato, P., D. F. Stockli, M. R. Ghassemi, A. Landgraf, M. R. Strecker, J. Hassanzadeh, A. Friedrich, and S. H. Tabatabaei (2012), Accommodation of transpressional strain in the Arabia-Eurasia collision zone: new constraints from (U-Th)/He thermochronology in the Alborz mountains. Y1 - 2013 U6 - https://doi.org/10.1029/2012TC003159 SN - 0278-7407 VL - 32 IS - 1 SP - 1 EP - 18 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ghassemi, Mohammad R. A1 - Fattahi, Morteza A1 - Landgraf, Angela A1 - Ahmadi, Mehdi A1 - Ballato, Paolo A1 - Tabatabaei, Saeid H. T1 - Kinematic links between the Eastern Mosha Fault and the North Tehran Fault, Alborz range, northern Iran JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Kinematic interaction of faults is an important issue for detailed seismic hazard assessments in seismically active regions. The Eastern Mosha Fault (EMF) and the North Tehran Fault (NTF) are two major active faults of the southern central Alborz mountains, located in proximity of Tehran (population similar to 9 million). We used field, geomorphological and paleoseismological data to explore the kinematic transition between the faults, and compare their short-term and long-term history of activity. We introduce the Niknamdeh segment of the NTF along which the strike-slip kinematics of EMF is transferred onto the NTF, and which is also responsible for the development of a pull-apart basin between the eastern segments of the NTF. The Ira trench site at the linkage zone between the two faults reveals the history of interaction between rock avalanches, active faulting and sag-pond development. The kinematic continuity between the EMF and NTF requires updating of seismic hazard models for the NTF, the most active fault adjacent to the Tehran Metropolis. Study of offsets of large-scale morphological features along the EMF, and comparison with estimated slip rates along the fault indicates that the EMF has started its left-lateral kinematics between 3.2 and 4.7 Ma. According to our paleoseismological data and the morphology of the nearby EMF and NTF, we suggest minimum and maximum values of about 1.8 and 3.0 mm/year for the left-lateral kinematics on the two faults in their linkage zone, averaged over Holocene time scales. Our study provides a partial interpretation, based on available data, for the fault activity in northeastern Tehran region, which may be completed with studies of other active faults of the region to evaluate a more realistic seismic hazard analysis for this heavily populated major city. (C) 2014 Elsevier B.V. All rights reserved. KW - Mosha Fault KW - North Tehran Fault KW - Alborz range KW - Slip rate KW - Fault linkage and interaction KW - Paleoseismology Y1 - 2014 U6 - https://doi.org/10.1016/j.tecto.2014.03.007 SN - 0040-1951 SN - 1879-3266 VL - 622 SP - 81 EP - 95 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rosenwinkel, Swenja A1 - Korup, Oliver A1 - Landgraf, Angela A1 - Dzhumabaeva, Atyrgul T1 - Limits to lichenometry JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Lichenometry is a straightforward and inexpensive method for dating Holocene rock surfaces. The rationale is that the diameter of the largest lichen scales with the age of the originally fresh rock surface that it colonised. The success of the method depends on finding the largest lichen diameters, a suitable lichen-growth model, and a robust calibration curve. Recent critique of the method motivates us to revisit the accuracy and uncertainties of lichenometry. Specifically, we test how well lichenometry is capable of resolving the ages of different lobes of large active rock glaciers in the Kyrgyz Tien Shan. We use a bootstrapped quantile regression to calibrate local growth curves of Xanthoria elegans, Aspicilia tianshanica, and Rhizocarpon geographicum, and report a nonlinear decrease in dating accuracy with increasing lichen diameter. A Bayesian type of an analysis of variance demonstrates that our calibration allows discriminating credibly between rock-glacier lobes of different ages despite the uncertainties tied to sample size and correctly identifying the largest lichen thalli. Our results also show that calibration error grows with lichen size, so that the separability of rock-glacier lobes of different ages decreases, while the tendency to assign coeval ages increases. The abundant young (<200 yr) specimen of fast-growing X elegans are in contrast with the fewer, slow-growing, but older (200-1500 yr) R. geographicum and A. tianshanica, and record either a regional reactivation of lobes in the past 200 years, or simply a censoring effect of lichen mortality during early phases of colonisation. The high variance of lichen sizes captures the activity of rock-glacier lobes, which is difficult to explain by regional climatic cooling or earthquake triggers alone. Therefore, we caution against inferring palaeoclimatic conditions from the topographic position of rock-glacier lobes. We conclude that lichenometry works better as a tool for establishing a relative, rather than an absolute, chronology of rock-glacier lobes in the northern Tien Shan. (C) 2015 Elsevier Ltd. All rights reserved. KW - Lichenometry KW - Rock glacier KW - Absolute age dating KW - Kyrgyzstan KW - Tien Shan Y1 - 2015 U6 - https://doi.org/10.1016/j.quascirev.2015.10.031 SN - 0277-3791 VL - 129 SP - 229 EP - 238 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Donner, Stefanie A1 - Ghods, Abdolreza A1 - Krüer, Frank A1 - Rößler, Dirk A1 - Landgraf, Angela A1 - Ballato, Paolo T1 - The Ahar-Varzeghan Earthquake Doublet (M-w 6.4 and 6.2) of 11 August 2012: Regional Seismic Moment Tensors JF - Bulletin of the Seismological Society of America N2 - On 11 August 2012 an earthquake doublet (M-w 6.4 and 6.2) occurred near the city of Ahar, northwest Iran. Both events were only 6 km and 11 minutes apart, producing a surface rupture of about 12 km in length. Historical and modern seismicity has so far been sparse in this area. Spatially, the region represents a transitional zone between different tectonic domains, including compression in Iran, westward extrusion of the Anatolian plate, and thrusting beneath the Caucasus. In this study, we inverted the surface waveforms of the two mainshocks and 11 aftershocks (M-w >= 4.3) to obtain regional seismic moment tensors. The earthquakes analyzed can be grouped into pure strike slip (including the first mainshock) and oblique reverse mechanisms (including the second mainshock). The sequence provides information about faulting mechanisms at the spatial scale of the entire rock volume affected by the earthquake doublet, including coinciding deformation on minor faults (sub) parallel to the main fault and Riedel shears. It occurred on a so far unknown fault structure, which we call the Ahar fault. Alongside the seismological data, we used geological maps, satellite images, and digital elevation data to analyze the geomorphology of the region. Our analysis suggests that the adjacent North Tabriz fault, which accomodates up to 7 mm/yr of right-lateral strike-slip faulting, does not compensate the entire lateral shear strain, and that part of it is compensated farther north. Combined, our results suggest a temporally and spatially complex style of deformation (reverse and strike slip) overprinting older reverse deformation. Y1 - 2015 U6 - https://doi.org/10.1785/0120140042 SN - 0037-1106 SN - 1943-3573 VL - 105 IS - 2A SP - 791 EP - 807 PB - Seismological Society of America CY - Albany ER -