TY - JOUR A1 - Machens, Fabian A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Messerschmidt, Katrin T1 - Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae JF - Frontiers in Bioengineering and Biotechnology N2 - Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems. KW - JUB1 KW - synthetic biology KW - transcriptional regulation KW - gene expression KW - synthetic circuits KW - dead Cas9 KW - chimeric transcription factors Y1 - 2017 U6 - https://doi.org/10.3389/fbioe.2017.00063 SN - 2296-4185 VL - 5 SP - 1 EP - 11 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Brechun, Katherine Emily A1 - Arndt, Katja Maren A1 - Woolley, G. Andrew T1 - Selection of protein-protein interactions of desired affinities with a bandpass circuit JF - Journal of molecular biology : JMB N2 - We have developed a genetic circuit in Escherichia coli that can be used to select for protein-protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein-protein interaction strength to beta-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for beta-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein-protein interactions. We show that the circuit can be used to recover protein-protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein-protein interactions of defined strength. (C) 2018 Elsevier Ltd. All rights reserved. KW - synthetic biology KW - genetic circuit KW - biological engineering KW - protein-protein interactions KW - twin-arginine translocation KW - selection system Y1 - 2018 U6 - https://doi.org/10.1016/j.jmb.2018.11.011 SN - 0022-2836 SN - 1089-8638 VL - 431 IS - 2 SP - 391 EP - 400 PB - Elsevier CY - London ER - TY - JOUR A1 - Naseri, Gita A1 - Balazadeh, Salma A1 - Machens, Fabian A1 - Kamranfar, Iman A1 - Messerschmidt, Katrin A1 - Müller-Röber, Bernd T1 - Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae JF - ACS synthetic biology N2 - Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast. KW - Arabidopsis thaliana KW - artificial transcription factor KW - NAC transcription factor KW - synthetic biology KW - plant Y1 - 2017 U6 - https://doi.org/10.1021/acssynbio.7b00094 SN - 2161-5063 VL - 6 SP - 1742 EP - 1756 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ullner, E. A1 - Ares, S. A1 - Morelli, L. G. A1 - Oates, A. C. A1 - Jülicher, F. A1 - Nicola, E. A1 - Heussen, R. A1 - Whitmore, D. A1 - Blyuss, K. A1 - Fryett, M. A1 - Zakharova, A. A1 - Koseska, A. A1 - Nene, N. R. A1 - Zaikin, Alexei T1 - Noise and oscillations in biological sysems multidisciplinary approach between experimental biology, theoretical modelling and synthetic biology JF - International journal of modern physics : B, Condensed matter physics, statistical physics, applied physics N2 - Rapid progress of experimental biology has provided a huge flow of quantitative data, which can be analyzed and understood only through the application of advanced techniques recently developed in theoretical sciences. On the other hand, synthetic biology enabled us to engineer biological models with reduced complexity. In this review we discuss that a multidisciplinary approach between this sciences can lead to deeper understanding of the underlying mechanisms behind complex processes in biology. Following the mini symposia "Noise and oscillations in biological systems" on Physcon 2011 we have collected different research examples from theoretical modeling, experimental and synthetic biology. KW - Systems biology KW - synthetic biology KW - nonlinear dynamics Y1 - 2012 U6 - https://doi.org/10.1142/S0217979212460095 SN - 0217-9792 VL - 26 IS - 25 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - de la Cruz, Jorge Gonzalez A1 - Machens, Fabian A1 - Messerschmidt, Katrin A1 - Bar-Even, Arren T1 - Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast JF - ACS synthetic biology N2 - One-carbon (C1) compounds are attractive microbial feedstocks as they can be efficiently produced from widely available resources. Formate, in particular, represents a promising growth substrate, as it can be generated from electrochemical reduction of CO2 and fed to microorganisms in a soluble form. We previously identified the synthetic reductive glycine pathway as the most efficient route for aerobic growth on formate. We further demonstrated pathway activity in Escherichia coli after expression of both native and foreign genes. Here, we explore whether the reductive glycine pathway could be established in a model microorganism using only native enzymes. We used the yeast Saccharomyces cerevisiae as host and show that overexpression of only endogenous enzymes enables glycine biosynthesis from formate and CO2 in a strain that is otherwise auxotrophic for glycine. We find the pathway to be highly active in this host, where 0.125 mM formate is sufficient to support growth. Notably, the formate-dependent growth rate of the engineered S. cerevisiae strain remained roughly constant over a very wide range of formate concentrations, 1-500 mM, indicating both high affinity for formate use and high tolerance toward elevated concentration of this C1 feedstock. Our results, as well the availability of endogenous NAD-dependent formate dehydrogenase, indicate that yeast might be an especially suitable host for engineering growth on formate. KW - metabolic engineering KW - synthetic biology KW - one-carbon metabolism KW - carbon labeling KW - tetrahydrofolate KW - glycine cleavage system Y1 - 2019 U6 - https://doi.org/10.1021/acssynbio.8b00464 SN - 2161-5063 VL - 8 IS - 5 SP - 911 EP - 917 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Gorochowski, Thomas E. A1 - Aycilar-Kucukgoze, Irem A1 - Bovenberg, Roel A. L. A1 - Roubos, Johannes A. A1 - Ignatova, Zoya T1 - A Minimal Model of Ribosome Allocation Dynamics Captures Trade-offs in Expression between Endogenous and Synthetic Genes JF - ACS synthetic biology N2 - Cells contain a finite set of resources that must be distributed across many processes to ensure survival. Among them, the largest proportion of cellular resources is dedicated to protein translation. Synthetic biology often exploits these resources in executing orthogonal genetic circuits, yet the burden this places on the cell is rarely considered. Here, we develop a minimal model of ribosome allocation dynamics capturing the demands on translation when expressing a synthetic construct together with endogenous genes required for the maintenance of cell physiology. Critically, it contains three key variables related to design parameters of the synthetic construct covering transcript abundance, translation initiation rate, and elongation time. We show that model-predicted changes in ribosome allocation closely match experimental shifts in synthetic protein expression rate and cellular growth. Intriguingly, the model is also able to accurately infer transcript levels and translation times after further exposure to additional ambient stress. Our results demonstrate that a simple model of resource allocation faithfully captures the redistribution of protein synthesis resources when faced with the burden of synthetic gene expression and environmental stress. The tractable nature of the model makes it a versatile tool for exploring the guiding principles of efficient heterologous expression and the indirect interactions that can arise between synthetic circuits and their host chassis because of competition for shared translational resources. KW - protein biosynthesis KW - translation KW - synthetic biology KW - systems biology Y1 - 2016 U6 - https://doi.org/10.1021/acssynbio.6b00040 SN - 2161-5063 VL - 5 SP - 710 EP - 720 PB - American Chemical Society CY - Washington ER -