TY - JOUR A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells JF - Solar RRL N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - https://doi.org/10.1002/solr.202000649 SN - 2367-198X VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zamponi, Flavio A1 - Penfold, Thomas J. A1 - Nachtegaal, Maarten A1 - Lübcke, Andrea A1 - Rittmann, Jochen A1 - Milne, Chris J. A1 - Chergui, Majed A1 - van Bokhoven, Jeroen A. T1 - Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy JF - physical chemistry, chemical physics : PCCP N2 - Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8% expansion of the Au–Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1. KW - TiO2 nanoparticles KW - diimine-complexes KW - electron-transfer KW - supported gold KW - visible-light KW - water KW - surface KW - reactivity KW - nanoclusters KW - excitation Y1 - 2014 U6 - https://doi.org/10.1039/c4cp03301a SN - 1463-9076 SN - 1463-9084 VL - 2014 IS - 16 SP - 23157 EP - 23163 ER - TY - JOUR A1 - Perovic, Milena A1 - Qin, Qing A1 - Oschatz, Martin T1 - From molecular precursors to nanoparticles BT - tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization JF - Advanced functional materials N2 - Nanoporous carbon materials (NCMs) provide the "function" of high specific surface area and thus have large interface area for interactions with surrounding species, which is of particular importance in applications related to adsorption processes. The strength and mechanism of adsorption depend on the pore architecture of the NCMs. In addition, chemical functionalization can be used to induce changes of electron density and/or electron density distribution in the pore walls, thus further modifying the interactions between carbons and guest species. Typical approaches for functionalization of nanoporous materials with regular atomic construction like porous silica, metal-organic frameworks, or zeolites, cannot be applied to NCMs due to their less defined local atomic construction and abundant defects. Therefore, synthetic strategies that offer a higher degree of control over the process of functionalization are needed. Synthetic approaches for covalent functionalization of NCMs, that is, for the incorporation of heteroatoms into the carbon backbone, are critically reviewed with a special focus on strategies following the concept "from molecules to materials." Approaches for coordinative functionalization with metallic species, and the functionalization by nanocomposite formation between pristine carbon materials and heteroatom-containing carbons, are introduced as well. Particular focus is given to the influences of these functionalizations in adsorption-related applications. KW - composites KW - heteroatoms KW - metal species KW - porous carbon materials KW - surface KW - functionalization Y1 - 2020 U6 - https://doi.org/10.1002/adfm.201908371 SN - 1616-301X SN - 1616-3028 VL - 30 IS - 41 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Poch, Olivier A1 - Istiqomah, Istiqomah A1 - Quirico, Eric A1 - Beck, Pierre A1 - Schmitt, Bernard A1 - Theulé, Patrice A1 - Faure, Alexandre A1 - Hily-Blant, Pierre A1 - Bonal, Lydie A1 - Kappel, David T1 - Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids JF - Science N2 - The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud. KW - resolution infrared-spectroscopy KW - ice absorption features KW - young stellar objects KW - exposed water ice KW - MU-M KW - bidirectional reflectance KW - murchison meteorite KW - interstellar ice KW - spectra KW - surface Y1 - 2020 U6 - https://doi.org/10.1126/science.aaw7462 SN - 1095-9203 SN - 0036-8075 VL - 367 IS - 6483 SP - 1 EP - 8 PB - AAAS, American Association for the Advancement of Science CY - Washington, DC ER - TY - GEN A1 - Poch, Olivier A1 - Istiqomah, Istiqomah A1 - Quirico, Eric A1 - Beck, Pierre A1 - Schmitt, Bernard A1 - Theulé, Patrice A1 - Faure, Alexandre A1 - Hily-Blant, Pierre A1 - Bonal, Lydie A1 - Kappel, David T1 - Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1389 KW - resolution infrared-spectroscopy KW - ice absorption features KW - young stellar objects KW - exposed water ice KW - MU-M KW - bidirectional reflectance KW - murchison meteorite KW - interstellar ice KW - spectra KW - surface Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-513751 SN - 1866-8372 N1 - This secondary publication was withdrawn for copyright reasons. IS - 6483 ER -