TY - JOUR A1 - Chromik, Jonas A1 - Kirsten, Kristina A1 - Herdick, Arne A1 - Kappattanavar, Arpita Mallikarjuna A1 - Arnrich, Bert T1 - SensorHub BT - Multimodal sensing in real-life enables home-based studies JF - Sensors N2 - Observational studies are an important tool for determining whether the findings from controlled experiments can be transferred into scenarios that are closer to subjects' real-life circumstances. A rigorous approach to observational studies involves collecting data from different sensors to comprehensively capture the situation of the subject. However, this leads to technical difficulties especially if the sensors are from different manufacturers, as multiple data collection tools have to run simultaneously. We present SensorHub, a system that can collect data from various wearable devices from different manufacturers, such as inertial measurement units, portable electrocardiographs, portable electroencephalographs, portable photoplethysmographs, and sensors for electrodermal activity. Additionally, our tool offers the possibility to include ecological momentary assessments (EMAs) in studies. Hence, SensorHub enables multimodal sensor data collection under real-world conditions and allows direct user feedback to be collected through questionnaires, enabling studies at home. In a first study with 11 participants, we successfully used SensorHub to record multiple signals with different devices and collected additional information with the help of EMAs. In addition, we evaluated SensorHub's technical capabilities in several trials with up to 21 participants recording simultaneously using multiple sensors with sampling frequencies as high as 1000 Hz. We could show that although there is a theoretical limitation to the transmissible data rate, in practice this limitation is not an issue and data loss is rare. We conclude that with modern communication protocols and with the increasingly powerful smartphones and wearables, a system like our SensorHub establishes an interoperability framework to adequately combine consumer-grade sensing hardware which enables observational studies in real life. KW - multimodal sensing KW - home-based studies KW - activity recognition KW - sensor KW - systems KW - ecological momentary assessment KW - digital health Y1 - 2022 U6 - https://doi.org/10.3390/s22010408 SN - 1424-8220 VL - 22 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Weiler, Markus A1 - Menzel, Christoph A1 - Pertsch, Thomas A1 - Alaee, Rasoul A1 - Rockstuhl, Carsten A1 - Pacholski, Claudia T1 - Bottom-Up Fabrication of Hybrid Plasmonic Sensors: Gold-Capped Hydrogel Microspheres Embedded in Periodic Metal Hole Arrays JF - Polymer : the international journal for the science and technology of polymers N2 - The high potential of bottom-up fabrication strategies for realizing sophisticated optical sensors combining the high sensitivity of a surface plasmon resonance with the exceptional properties of stimuli-responsive hydrogel is demonstrated. The sensor is composed of a periodic hole array in a gold film whose holes are filled with gold-capped poly(N-isoproyl-acrylamide) (polyNIPAM) microspheres. The production of this sensor relies on a pure chemical approach enabling simple, time-efficient, and cost-efficient preparation of sensor platforms covering areas of cm(2). The transmission spectrum of this plasmonic sensor shows a strong interaction between propagating surface plasmon polaritons at the metal film surface and localized surface plasmon resonance of the gold cap on top of the polyNIPAM microspheres. Computer simulations support this experimental observation. These interactions lead to distinct changes in the transmission spectrum, which allow for the simultaneous, sensitive optical detection of refractive index changes in the surrounding medium and the swelling state of the embedded polyNIPAM microsphere under the gold cap. The volume of the polyNIPAM microsphere located underneath the gold cap can be changed by certain stimuli such as temperature, pH, ionic strength, and distinct molecules bound to the hydrogel matrix facilitating the detection of analytes which do not change the refractive index of the surrounding medium significantly. KW - bottom-up KW - hydrogel KW - hole array KW - sensor KW - surface plasmon resonance Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b08636 SN - 1944-8244 VL - 8 SP - 26392 EP - 26399 PB - American Chemical Society CY - Washington ER -