TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengiesser, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging JF - Advanced engineering materials N2 - While the problem of the identification of mechanisms of hydrogen-assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. Herein, it is shown how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in the literature, but this time using a nondestructive technique, it is shown that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, it is deduced that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. It is shown that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and it is deduced that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - computed tomography KW - fractography KW - hydrogen KW - embrittlement KW - microcracking KW - synchrotron radiation KW - X-ray refraction Y1 - 2022 U6 - https://doi.org/10.1002/adem.202101287 SN - 1527-2648 VL - 24 IS - 6 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Laquai, Rene A1 - Gouraud, Fanny A1 - Müller, Bernd Randolf A1 - Huger, Marc A1 - Chotard, Thierry A1 - Antou, Guy A1 - Bruno, Giovanni T1 - Evolution of Thermal Microcracking in Refractory ZrO2-SiO2 after Application of External Loads at High Temperatures JF - Materials N2 - Zirconia-based cast refractories are widely used for glass furnace applications. Since they have to withstand harsh chemical as well as thermo-mechanical environments, internal stresses and microcracking are often present in such materials under operating conditions (sometimes in excess of 1700 °C). We studied the evolution of thermal (CTE) and mechanical (Young’s modulus) properties as a function of temperature in a fused-cast refractory containing 94 wt.% of monoclinic ZrO2 and 6 wt.% of a silicate glassy phase. With the aid of X-ray refraction techniques (yielding the internal specific surface in materials), we also monitored the evolution of microcracking as a function of thermal cycles (crossing the martensitic phase transformation around 1000 °C) under externally applied stress. We found that external compressive stress leads to a strong decrease of the internal surface per unit volume, but a tensile load has a similar (though not so strong) effect. In agreement with existing literature on β-eucryptite microcracked ceramics, we could explain these phenomena by microcrack closure in the load direction in the compression case, and by microcrack propagation (rather than microcrack nucleation) under tensile conditions. KW - electro-fused zirconia KW - microcracking KW - synchrotron x-ray refraction radiography (SXRR) KW - thermal expansion Y1 - 2019 U6 - https://doi.org/10.3390/ma12071017 SN - 1996-1944 VL - 12 IS - 7 PB - MDPI CY - Basel ER -