TY - JOUR A1 - De Frenne, Pieter A1 - Graae, Bente J. A1 - Brunet, Jörg A1 - Shevtsova, Anna A1 - De Schrijver, An A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Hermy, Martin A1 - Heinken, Thilo A1 - Kolb, Annette A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Verheyen, Kris T1 - The response of forest plant regeneration to temperature variation along a latitudinal gradient JF - Annals of botany N2 - The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics. KW - Anemone nemorosa KW - climate change KW - common garden KW - growth chambers KW - latitudinal gradient KW - local adaptation KW - Milium effusum KW - plant regeneration KW - range edges KW - recruitment KW - seedling establishment KW - temperature Y1 - 2012 U6 - https://doi.org/10.1093/aob/mcs015 SN - 0305-7364 VL - 109 IS - 5 SP - 1037 EP - 1046 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - De Frenne, Pieter A1 - Brunet, Jorg A1 - Shevtsova, Anna A1 - Kolb, Annette A1 - Graae, Bente J. A1 - Chabrerie, Olivier A1 - Cousins, Sara Ao A1 - Decocq, Guillaume A1 - De Schrijver, An A1 - Diekmann, Martin A1 - Gruwez, Robert A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Tack, Wesley A1 - Willaert, Justin A1 - Verheyen, Kris T1 - Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient JF - Global change biology N2 - Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics. KW - climate change KW - common garden experiment KW - forest understorey KW - latitude KW - local adaptation KW - open-top chambers KW - phenotypic plasticity KW - pot experiment Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02449.x SN - 1354-1013 VL - 17 IS - 10 SP - 3240 EP - 3253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Weisse, Thomas A1 - Berendonk, Thomas U. A1 - Kamjunke, Norbert A1 - Moser, Michael A1 - Scheffel, U. A1 - Stadler, P. A1 - Weithoff, Guntram T1 - Significant habitat effects influence protist fitness evidence for local adaptation from acidic mining lakes JF - Ecosphere : the magazine of the International Ecology University N2 - It is currently controversially discussed if the same freshwater microorganisms occur worldwide wherever their required habitats are realized, i.e., without any adaptation to local conditions below the species level. We performed laboratory experiments with flagellates and ciliates from three acidic mining lakes (AML, pH similar to 2.7) to investigate if similar habitats may affect similar organisms differently. Such man-made lakes provide suitable ecosystem models to test for the significance of strong habitat selection. To this end, we analyzed the growth response of three protist taxa (three strains of the phytoflagellate Chlamydomonas acidophila, two isolates of the phytoflagellate Ochromonas and two species of the ciliate genus Oxytricha) by exposing them to lake water of their origin and from the two other AML in a cross-factorial design. Population growth rates were measured as a proxy for their fitness. Results revealed significant effects of strain, lake (= habitat), and strain X habitat interaction. In the environmentally most adverse AML, all three protist taxa were locally adapted. In conclusion, our study demonstrates that (1) the same habitat may affect strains of the same species differently and that (2) similar habitats may harbor ecophysiologically different strains or species. These results contradict the 'everything is everywhere' paradigm. KW - allopatric speciation KW - Chlamydomonas acidophila KW - ciliates KW - everything is everywhere KW - flagellates KW - freshwater microbes KW - habitat-species interaction KW - local adaptation KW - Ochromonas spp. KW - Oxytricha spp. Y1 - 2011 U6 - https://doi.org/10.1890/ES11-00157.1 SN - 2150-8925 VL - 2 IS - 12 PB - Wiley CY - Washington ER - TY - JOUR A1 - Latimer, Andrew M. A1 - Jacobs, Brooke S. A1 - Gianoli, Ernesto A1 - Heger, Tina A1 - Salgado-Luarte, Cristian T1 - Parallel functional differentiation of an invasive annual plant on two continents JF - AoB PLANTS N2 - Rapid local adaptation frequently occurs during the spread of invading species. It remains unclear, however, how consistent, and therefore potentially predictable, such patterns of local adaptation are. One approach to this question is to measure patterns of local differentiation in functional traits and plasticity levels in invasive species in multiple regions. Finding consistent patterns of local differentiation in replicate regions suggests that these patterns are adaptive. Further, this outcome indicates that the invading species likely responds predictably to selection along environmental gradients, even though standing genetic variation is likely to have been reduced during introduction. We studied local differentiation in the invasive annual plant Erodium cicutarium in two invaded regions, California and Chile. We collected seeds from across strong gradients in precipitation and temperature in Mediterranean-climate parts of the two regions (10 populations per region). We grew seeds from maternal families from these populations through two generations and exposed the second generation to contrasting levels of water and nutrient availability. We measured growth, flowering time and leaf functional traits across these treatments to obtain trait means and plasticity measures. We found strong differentiation among populations in all traits. Plants from drier environments flowered earlier, were less plastic in flowering time and reached greater size in all treatments. Correlations among traits within regions suggested a coordinated evolutionary response along environmental gradients associated with growing season length. There was little divergence in traits and trait intercorrelations between regions, but strongly parallel divergence in traits within regions. Similar, statistically consistent patterns of local trait differentiation across two regions suggest that local adaptation to environmental gradients has aided the spread of this invasive species, and that the formation of ecotypes in newly invaded environments has been relatively consistent and predictable. KW - Erodium cicutarium KW - flowering time KW - functional trait correlations KW - invasive species KW - life-history strategy KW - local adaptation KW - parallel evolution KW - phenotypic plasticity Y1 - 2019 U6 - https://doi.org/10.1093/aobpla/plz010 SN - 2041-2851 VL - 11 IS - 2 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Herden, Jasmin A1 - Eckert, Silvia A1 - Stift, Marc A1 - Joshi, Jasmin Radha A1 - van Kleunen, Mark T1 - No evidence for local adaptation and an epigenetic underpinning in native and non-native ruderal plant species in Germany JF - Ecology and evolution N2 - Many invasive species have rapidly adapted to different environments in their new ranges. This is surprising, as colonization is usually associated with reduced genetic variation. Heritable phenotypic variation with an epigenetic basis may explain this paradox. Here, we assessed the contribution of DNA methylation to local adaptation in native and naturalized non-native ruderal plant species in Germany. We reciprocally transplanted offspring from natural populations of seven native and five non-native plant species between the Konstanz region in the south and the Potsdam region in the north of Germany. Before the transplant, half of the seeds were treated with the demethylation agent zebularine. We recorded survival, flowering probability, and biomass production as fitness estimates. Contrary to our expectations, we found little evidence for local adaptation, both among the native and among the non-native plant species. Zebularine treatment had mostly negative effects on overall plant performance, regardless of whether plants were local or not, and regardless of whether they were native or non-native. Synthesis. We conclude that local adaptation, at least at the scale of our study, plays no major role in the success of non-native and native ruderal plants. Consequently, we found no evidence yet for an epigenetic basis of local adaptation. KW - biological invasions KW - epigenetics KW - local adaptation KW - reciprocal transplant experiment KW - ruderal plant species KW - zebularine Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5325 SN - 2045-7758 VL - 9 IS - 17 SP - 9412 EP - 9426 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Plath, Martin A1 - Pfenninger, Markus A1 - Lerp, Hannes A1 - Riesch, Rüdiger A1 - Eschenbrenner, Christoph A1 - Slattery, Patrick A. A1 - Bierbach, David A1 - Herrmann, Nina A1 - Schulte, Matthias A1 - Arias-Rodriguez, Lenin A1 - Rimber Indy, Jeane A1 - Passow, Courtney A1 - Tobler, Michael T1 - Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments JF - Evolution N2 - We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RIs) was negatively correlated with the strength of natural selection (RIm), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. KW - Ecological speciation KW - isolation-by-adaptation KW - local adaptation KW - Poecilia mexicana KW - reinforcement KW - sexual isolation Y1 - 2013 U6 - https://doi.org/10.1111/evo.12133 SN - 0014-3820 VL - 67 IS - 9 SP - 2647 EP - 2661 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Shi, Jun A1 - Joshi, Jasmin Radha A1 - Tielboerger, Katja A1 - Verhoeven, Koen J. F. A1 - Macel, Mirka T1 - Costs and benefits of admixture between foreign genotypes and local populations in the field JF - Ecology and evolution N2 - Admixture is the hybridization between populations within one species. It can increase plant fitness and population viability by alleviating inbreeding depression and increasing genetic diversity. However, populations are often adapted to their local environments and admixture with distant populations could break down local adaptation by diluting the locally adapted genomes. Thus, admixed genotypes might be selected against and be outcompeted by locally adapted genotypes in the local environments. To investigate the costs and benefits of admixture, we compared the performance of admixed and within-population F1 and F2 generations of the European plant Lythrum salicaria in a reciprocal transplant experiment at three European field sites over a 2-year period. Despite strong differences between site and plant populations for most of the measured traits, including herbivory, we found limited evidence for local adaptation. The effects of admixture depended on experimental site and plant population, and were positive for some traits. Plant growth and fruit production of some populations increased in admixed offspring and this was strongest with larger parental distances. These effects were only detected in two of our three sites. Our results show that, in the absence of local adaptation, admixture may boost plant performance, and that this is particularly apparent in stressful environments. We suggest that admixture between foreign and local genotypes can potentially be considered in nature conservation to restore populations and/or increase population viability, especially in small inbred or maladapted populations. KW - heterosis KW - inbreeding depression KW - local adaptation KW - Lythrum salicaria KW - outbreeding depression Y1 - 2018 U6 - https://doi.org/10.1002/ece3.3946 SN - 2045-7758 VL - 8 IS - 7 SP - 3675 EP - 3684 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kahl, Sandra M. A1 - Lenhard, Michael A1 - Joshi, Jasmin Radha T1 - Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris JF - The journal of ecology N2 - The adaptation of plants to future climatic conditions is crucial for their survival. Not surprisingly, phenotypic responses to climate change have already been observed in many plant populations. These responses may be due to evolutionary adaptive changes or phenotypic plasticity. Especially plant species with a wide geographic range are either expected to show genetic differentiation in response to differing climate conditions or to have a high phenotypic plasticity. We investigated phenotypic responses and plasticity as an estimate of the adaptive potential in the widespread species Silene vulgaris. In a greenhouse experiment, 25 European populations covering a geographic range from the Canary Islands to Sweden were exposed to three experimental precipitation and two temperature regimes mimicking a possible climate-change scenario for central Europe. We hypothesized that southern populations have a better performance under high temperature and drought conditions, as they are already adapted to a comparable environment. We found that our treatments significantly influenced the plants, but did not reveal a latitudinal difference in response to climate treatments for most plant traits. Only flower number showed a stronger plasticity in northern European populations (e.g. Swedish populations) where numbers decreased more drastically with increased temperature and decreased precipitation treatment. Synthesis. The significant treatment response in Silene vulgaris, independent of population origin - except for the number of flowers produced - suggests a high degree of universal phenotypic plasticity in this widely distributed species. This reflects the likely adaptation strategy of the species and forms the basis for a successful survival strategy during upcoming climatic changes. However, as flower number, a strongly fitness-related trait, decreased more strongly in northern populations under a climate-change scenario, there might be limits to adaptation even in this widespread, plastic species. KW - climate change KW - global change ecology KW - latitudinal gradient KW - local adaptation KW - phenotypic plasticity KW - plant performance KW - temperature increase Y1 - 2019 U6 - https://doi.org/10.1111/1365-2745.13133 SN - 0022-0477 SN - 1365-2745 VL - 107 IS - 4 SP - 1918 EP - 1930 PB - Wiley CY - Hoboken ER -