TY - JOUR A1 - Lood, Kajsa A1 - Schmidt, Bernd T1 - Stereoselective synthesis of conjugated polyenes based on tethered olefin metathesis and carbonyl olefination BT - application to the total synthesis of (+)-bretonin B JF - The journal of organic chemistry N2 - The combination of a highly stereoselective tethered olefin metathesis reaction and a Julia-Kocienski olefination is presented as a strategy for the synthesis of conjugated polyenes with at least one Z-configured C=C bond. The strategy is exemplified by the synthesis of the marine natural product (+)-bretonin B. KW - absolute-configuration KW - natural-products KW - formal synthesis KW - oxidation KW - derivatives KW - aldehydes KW - catalysts KW - alcohols KW - sponge KW - ethers Y1 - 2020 U6 - https://doi.org/10.1021/acs.joc.0c00446 SN - 0022-3263 SN - 1520-6904 VL - 85 IS - 7 SP - 5122 EP - 5130 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Qin, Qing A1 - Oschatz, Martin T1 - Overcoming chemical inertness under ambient conditions BT - a critical view on recent developments in Ammonia synthesis via electrochemical N-2 reduction by asking five questions JF - ChemElectroChem N2 - Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist. KW - N-2 reduction KW - ammonia synthesis KW - catalysis KW - catalysts KW - electrolytes Y1 - 2022 U6 - https://doi.org/10.1002/celc.201901970 SN - 2196-0216 VL - 7 IS - 4 SP - 878 EP - 889 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Brennecke, Julia A1 - Ertug, Gokhan A1 - Elfring, Tom T1 - Networking fast and slow BT - the role of speed in tie formation JF - Journal of Management N2 - Growing interest in network dynamics has led to insights about patterns of network change, drivers of tie formation, and the temporal unfolding of the consequences of networks. To this area of inquiry, we introduce networking speed—the time that it takes for individuals to form a network tie—as an important but so far largely overlooked aspect. We develop a theory of networking speed that explains how different catalysts enable professionals to introduce variation into the speed with which they form interpersonal network ties. We discuss how such variation in the speed with which ties have been formed influences relational outcomes and the network returns that these ties generate. This discussion illustrates that high networking speed can entail advantages as well as pitfalls. We also explore temporal implications of networking speed—for instance, the persistence of the effects of speed over time. Overall, we conceptualize networking speed as a constitutive element of how interpersonal networks function in professional settings, and we propose a future research program for the integration of this novel concept into organizational network research. KW - tie formation KW - networking speed KW - catalysts KW - network dynamics KW - professional networks KW - interpersonal networks Y1 - 2022 U6 - https://doi.org/10.1177/01492063221132483 SN - 0149-2063 SN - 1557-1211 SP - 1 EP - 29 PB - Sage Publ. CY - London ER -