TY - JOUR A1 - Wehrhan, Marc A1 - Rauneker, Philipp A1 - Sommer, Michael T1 - UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes-A Case Study from the CarboZALF Experimental Area JF - SENSORS N2 - The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b(899). The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part. KW - VI KW - soil landscape KW - carbon export KW - agriculture KW - multispectral KW - UAV Y1 - 2016 U6 - https://doi.org/10.3390/s16020255 SN - 1424-8220 VL - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Neill, Christopher A1 - Jankowski, KathiJo A1 - Brando, Paulo M. A1 - Coe, Michael T. A1 - Deegan, Linda A. A1 - Macedo, Marcia N. A1 - Riskin, Shelby H. A1 - Porder, Stephen A1 - Elsenbeer, Helmut A1 - Krusche, Alex V. T1 - Surprisingly Modest Water Quality Impacts From Expansion and Intensification of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region JF - Tropical conservation science N2 - Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single-and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single-and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices. KW - water KW - quality KW - agriculture KW - intensification KW - impact Y1 - 2017 U6 - https://doi.org/10.1177/1940082917720669 SN - 1940-0829 VL - 10 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Merfort, Leon A1 - Bauer, Nico A1 - Humpenöder, Florian A1 - Klein, David A1 - Strefler, Jessica A1 - Popp, Alexander A1 - Luderer, Gunnar A1 - Kriegler, Elmar T1 - State of global land regulation inadequate to control biofuel land-use-change emissions JF - Nature climate change N2 - Under current land-use regulation, carbon dioxide emissions from biofuel production exceed those from fossil diesel combustion. Therefore, international agreements need to ensure the effective and globally comprehensive protection of natural land before modern bioenergy can effectively contribute to achieving carbon neutrality. KW - agriculture KW - climate-change mitigation KW - energy policy KW - energy supply and demand KW - environmental economics Y1 - 2023 U6 - https://doi.org/10.1038/s41558-023-01711-7 SN - 1758-678X SN - 1758-6798 VL - 13 IS - 7 SP - 610 EP - 612 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Langhammer, Maria A1 - Grimm, Volker T1 - Mitigating bioenergy-driven biodiversity decline BT - a modelling approach with the European brown hare JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - The cultivation of energy crops leads to direct and indirect land use changes that impair the biodiversity of the agricultural landscape. In our study, we analyse the effects of mitigation measures on the European brown hare (Lepus europaeus), which is directly affected by ongoing land use change and has experienced widespread decline throughout Europe since the 1960s. Therefore, we developed a spatially explicit and individual-based ecological model to study the effects of different landscape configurations and compositions on hare population development. As an input, we used two 4 x 4 km large model landscapes, which were generated by a landscape generator based on real field sizes and crop proportions and differed in average field size and crop composition. The crops grown annually are evaluated in terms of forage suitability, breeding suitability and crop richness for the hare. In six mitigation scenarios, we investigated the effects of a 10 % increase in the following measures: (1) mixed silphie, (2) miscanthus, (3) grass-clover ley, (4) alfalfa, (5) set-aside, and (6) general crop richness. All mitigation measures had significant effects on hare population development. Compared to the base scenario, the relative change in hare abundance ranged from a factor of 0.56 in the grass-clover ley scenario to-0.16 in the miscanthus scenario. The mitigation measures of mixed silphie, grass-clover ley and increased crop richness led to distinct increases in hare abundance in both landscapes ( > 0.3). The results show that both landscape configuration and composition have a significant effect on hare population development, which responds particularly strongly to compositional changes. The increase in crop diversity, e.g., through the cultivation of alternative energy crops such as mixed silphie and grass-clover ley, proves to be beneficial for the brown hare. KW - agent-based modelling KW - mitigation measures KW - agriculture KW - European brown KW - hare KW - land-use change KW - Lepus europaeus Y1 - 2020 U6 - https://doi.org/10.1016/j.ecolmodel.2019.108914 SN - 0304-3800 SN - 1872-7026 VL - 416 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kalkuhl, Matthias A1 - Schwerhoff, Gregor A1 - Waha, Katharina T1 - Land tenure, climate and risk management JF - Ecological economics N2 - We analyze to what extent climate conditions affect the prevalence of sharecropping as a form of traditional land tenure. We investigate how sharecropping tenure is related to climate risk and how it interacts with fertilizer use and livestock ownership that both influence production risk. We first develop a stylized theoretical model to illustrate the role of climate for land tenure and production. Our empirical analysis is based on more than 9000 households with considerable heterogeneity in climate conditions across several African countries. We find that farmers in areas with low precipitation are more likely to be sharecroppers. We further find evidence for risk management interaction effects as sharecropping farmers are less likely to own livestock and more likely to use fertilizer. In economies where formal kinds of insurance are unavailable, sharecropping thus functions as a form of insurance and reduces the need for potentially costly risk management strategies. KW - traditional land tenure KW - climate KW - risk management KW - agriculture KW - Africa KW - sharecropping Y1 - 2020 U6 - https://doi.org/10.1016/j.ecolecon.2019.106573 SN - 0921-8009 SN - 1873-6106 VL - 171 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Mayer, Martin A1 - Ullmann, Wiebke A1 - Sunde, Peter A1 - Fischer, Christina A1 - Blaum, Niels T1 - Habitat selection by the European hare in arable landscapes BT - The importance of small-scale habitat structure for conservation JF - Ecology and Evolution N2 - Agricultural land-use practices have intensified over the last decades, leading to population declines of various farmland species, including the European hare (Lepus europaeus). In many European countries, arable fields dominate agricultural landscapes. Compared to pastures, arable land is highly variable, resulting in a large spatial variation of food and cover for wildlife over the course of the year, which potentially affects habitat selection by hares. Here, we investigated within-home-range habitat selection by hares in arable areas in Denmark and Germany to identify habitat requirements for their conservation. We hypothesized that hare habitat selection would depend on local habitat structure, that is, vegetation height, but also on agricultural field size, vegetation type, and proximity to field edges. Active hares generally selected for short vegetation (1-25 cm) and avoided higher vegetation and bare ground, especially when fields were comparatively larger. Vegetation >50 cm potentially restricts hares from entering parts of their home range and does not provide good forage, the latter also being the case on bare ground. The vegetation type was important for habitat selection by inactive hares, with fabaceae, fallow, and maize being selected for, potentially providing both cover and forage. Our results indicate that patches of shorter vegetation could improve the forage quality and habitat accessibility for hares, especially in areas with large monocultures. Thus, policymakers should aim to increase areas with short vegetation throughout the year. Further, permanent set-asides, like fallow and wildflower areas, would provide year-round cover for inactive hares. Finally, the reduction in field sizes would increase the density of field margins, and farming different crop types within small areas could improve the habitat for hares and other farmland species. KW - agriculture KW - arable land KW - conservation KW - GPS KW - habitat selection KW - Lepus europaeus KW - vegetation height Y1 - 2018 U6 - https://doi.org/10.1002/ece3.4613 SN - 2045-7758 VL - 8 IS - 23 SP - 11619 EP - 11633 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Eccard, Jana T1 - Can rolling composite wildflower blocks increase biodiversity in agricultural landscapes better than wildflowers strips? JF - Journal of applied ecology : an official journal of the British Ecological Society N2 - Biodiversity and abundance of wildlife has dramatically declined in agricultural landscapes. Sown, short-lived wildflower (WF) strips along the margins of crop fields are a widespread and often subsidised in agri-environmental schemes, intended to enhance biodiversity, provide refuges for wild plant and arthropod populations and to provide ecosystem services to crops. Meanwhile, WF elements are also criticised, since their functionality decreases with plant succession, the removal of aged WF strip poses an ecological trap for the attracted arthropod populations and only common and mobile species benefit. Further, insects in WF strips are impacted by pesticides from agricultural fields due to shared boundaries with crop fields and by edge effects. The performance of the measure could be improved by combining several WF strips of different successional stages, each harbouring a unique community of plants and arthropods, into persistent, composite WF block, where successional stages exist in parallel. Monitoring data on many taxa in the literature shows, that a third of species are temporarily present in an ageing WF stip, thus offering composite WF blocks should increase cumulative species richness by 28%-39% compared to annual richness in WF strips. Persistence of composite WF blocks would offer reliable refuge for animal and plant populations, also supporting their predators and herbivores. Further, WF blocks have less boundaries to crops compared to WF strips of the same area, and are less impacted by edge effects and pesticides. Policy implications. Here I suggest a change of conservation practice changing from successional WF strips to composite WF blocks. By regular removal and replacement of aged WF strips either within the block (rotational) or at its margins (rolling), the habitat heterogeneity in composite WF block could be perpetuated. Rolling composite WF blocks change locations over years, and the original location can be reconverted to arable land while a nearby WF block is still available to wildlife. A change in agricultural schemes would be necessary, since in some European countries clustered WF strips are explicitly not subsidised. KW - AES KW - agriculture KW - biodiversity KW - CAP KW - conservation scheme KW - field margins KW - insects Y1 - 2022 U6 - https://doi.org/10.1111/1365-2664.14147 SN - 0021-8901 SN - 1365-2664 VL - 59 IS - 5 SP - 1172 EP - 1177 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Merfort, Leon A1 - Bauer, Nico A1 - Humpenöder, Florian A1 - Klein, David A1 - Strefler, Jessica A1 - Popp, Alexander A1 - Luderer, Gunnar A1 - Kriegler, Elmar T1 - Bioenergy-induced land-use-change emissions with sectorally fragmented policies JF - Nature climate change N2 - Controlling bioenergy-induced land-use-change emissions is key to exploiting bioenergy for climate change mitigation. However, the effect of different land-use and energy sector policies on specific bioenergy emissions has not been studied so far. Using the global integrated assessment model REMIND-MAgPIE, we derive a biofuel emission factor (EF) for different policy frameworks. We find that a uniform price on emissions from both sectors keeps biofuel emissions at 12 kg CO2 GJ−1. However, without land-use regulation, the EF increases substantially (64 kg CO2 GJ−1 over 80 years, 92 kg CO2 GJ−1 over 30 years). We also find that comprehensive coverage (>90%) of carbon-rich land areas worldwide is key to containing land-use emissions. Pricing emissions indirectly on the level of bioenergy consumption reduces total emissions by cutting bioenergy demand but fails to reduce the average EF. In the absence of comprehensive and timely land-use regulation, bioenergy thus may contribute less to climate change mitigation than assumed previously. KW - agriculture KW - climate-change mitigation KW - energy policy KW - energy supply and demand KW - environmental economics Y1 - 2023 U6 - https://doi.org/10.1038/s41558-023-01697-2 SN - 1758-678X SN - 1758-6798 VL - 13 IS - 7 SP - 685 EP - 692 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Gevers, Jana A1 - Hoye, Toke Thomas A1 - Topping, Chris John A1 - Glemnitz, Michael A1 - Schroeder, Boris T1 - Biodiversity and the mitigation of climate change through bioenergy impacts of increased maize cultivation on farmland wildlife JF - Global change biology : Bioenergy N2 - The public promotion of renewable energies is expected to increase the number of biogas plants and stimulate energy crops cultivation (e. g. maize) in Germany. In order to assess the indirect effects of the resulting land-use changes on biodiversity, we developed six land-use scenarios and simulated the responses of six farmland wildlife species with the spatially explicit agent-based model system ALMaSS. The scenarios differed in composition and spatial configuration of arable crops. We implemented scenarios where maize for energy production replaced 15% and 30% of the area covered by other cash crops. Biogas maize farms were either randomly distributed or located within small or large aggregation clusters. The animal species investigated were skylark (Alauda arvensis), grey partridge (Perdix perdix), European brown hare (Lepus europaeus), field vole (Microtus agrestis), a linyphiid spider (Erigone atra) and a carabid beetle (Bembidion lampros). The changes in crop composition had a negative effect on the population sizes of skylark, partridge and hare and a positive effect on the population sizes of spider and beetle and no effect on the population size of vole. An aggregated cultivation of maize amplified these effects for skylark. Species responses to changes in the crop composition were consistent across three differently structured landscapes. Our work suggests that with the compliance to some recommendations, negative effects of biogas-related land-use change on the populations of the six representative farmland species can largely be avoided. KW - agriculture KW - ALMaSS KW - biogas KW - farmland biodiversity KW - land-use change KW - maize KW - spatially explicit agent-based modeling Y1 - 2011 U6 - https://doi.org/10.1111/j.1757-1707.2011.01104.x SN - 1757-1693 VL - 3 IS - 6 SP - 472 EP - 482 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wehrhan, Marc A1 - Sommer, Michael T1 - A parsimonious approach to estimate soil organic carbon applying Unmanned Aerial System (UAS) multispectral imagery and the topographic position index in a heterogeneous soil landscape JF - Remote sensing / Molecular Diversity Preservation International (MDPI) N2 - Remote sensing plays an increasingly key role in the determination of soil organic carbon (SOC) stored in agriculturally managed topsoils at the regional and field scales. Contemporary Unmanned Aerial Systems (UAS) carrying low-cost and lightweight multispectral sensors provide high spatial resolution imagery (<10 cm). These capabilities allow integrate of UAS-derived soil data and maps into digitalized workflows for sustainable agriculture. However, the common situation of scarce soil data at field scale might be an obstacle for accurate digital soil mapping. In our case study we tested a fixed-wing UAS equipped with visible and near infrared (VIS-NIR) sensors to estimate topsoil SOC distribution at two fields under the constraint of limited sampling points, which were selected by pedological knowledge. They represent all releva nt soil types along an erosion-deposition gradient; hence, the full feature space in terms of topsoils' SOC status. We included the Topographic Position Index (TPI) as a co-variate for SOC prediction. Our study was performed in a soil landscape of hummocky ground moraines, which represent a significant of global arable land. Herein, small scale soil variability is mainly driven by tillage erosion which, in turn, is strongly dependent on topography. Relationships between SOC, TPI and spectral information were tested by Multiple Linear Regression (MLR) using: (i) single field data (local approach) and (ii) data from both fields (pooled approach). The highest prediction performance determined by a leave-one-out-cross-validation (LOOCV) was obtained for the models using the reflectance at 570 nm in conjunction with the TPI as explanatory variables for the local approach (coefficient of determination (R-2) = 0.91; root mean square error (RMSE) = 0.11% and R-2 = 0.48; RMSE = 0.33, respectively). The local MLR models developed with both reflectance and TPI using values from all points showed high correlations and low prediction errors for SOC content (R-2 = 0.88, RMSE = 0.07%; R-2 = 0.79, RMSE = 0.06%, respectively). The comparison with an enlarged dataset consisting of all points from both fields (pooled approach) showed no improvement of the prediction accuracy but yielded decreased prediction errors. Lastly, the local MLR models were applied to the data of the respective other field to evaluate the cross-field prediction ability. The spatial SOC pattern generally remains unaffected on both fields; differences, however, occur concerning the predicted SOC level. Our results indicate a high potential of the combination of UAS-based remote sensing and environmental covariates, such as terrain attributes, for the prediction of topsoil SOC content at the field scale. The temporal flexibility of UAS offer the opportunity to optimize flight conditions including weather and soil surface status (plant cover or residuals, moisture and roughness) which, otherwise, might obscure the relationship between spectral data and SOC content. Pedologically targeted selection of soil samples for model development appears to be the key for an efficient and effective prediction even with a small dataset. KW - Unmanned Aerial System (UAS) KW - multispectral KW - Topographic Position Index KW - (TPI) KW - Multiple Linear Regression (MLR) KW - soil organic carbon (SOC) KW - agriculture KW - erosion KW - soil landscape KW - hummocky ground moraine Y1 - 2021 U6 - https://doi.org/10.3390/rs13183557 SN - 2072-4292 VL - 13 IS - 18 PB - MDPI CY - Basel ER -