TY - JOUR A1 - Nguyen Nghia Hung, A1 - Delgado, José Miguel Martins A1 - Güntner, Andreas A1 - Merz, Bruno A1 - Bardossy, Andras A1 - Apel, Heiko T1 - Sedimentation in the floodplains of the Mekong Delta, Vietnam. Part I: suspended sediment dynamics JF - Hydrological processes N2 - Suspended sediment is the primary source for a sustainable agro-ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality-monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. KW - Mekong Delta KW - floodplain KW - suspended sediment KW - sediment dynamics KW - floodplain sedimentation Y1 - 2014 U6 - https://doi.org/10.1002/hyp.9856 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 7 SP - 3132 EP - 3144 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Nguyen Viet Dung, A1 - Merz, Bruno A1 - Bardossy, Andras A1 - Apel, Heiko T1 - Handling uncertainty in bivariate quantile estimation - An application to flood hazard analysis in the Mekong Delta JF - Journal of hydrology N2 - The hydrological load causing flood hazard is in many instances not only determined by peak discharge, but is a multidimensional problem. While the methodology for multivariate frequency analysis is well established, the estimation of the associated uncertainty is rarely studied. In this paper, a method is developed to quantify the different sources of uncertainty for a bivariate flood frequency analysis. The method is exemplarily developed for the Mekong Delta (MD), one of the largest and most densely populated river deltas worldwide. Floods in the MD are the basis for the livelihoods of the local population, but they are also the major hazard. This hazard has, however, not been studied within the frame of a probabilistic flood hazard analysis. The nature of the floods in the MD suggests a bivariate approach, because the societal flood severity is determined by both peak discharge and flood volume. The uncertainty caused by selection of statistical models and parameter estimation procedures are analyzed by applying different models and methods. For the quantification of the sampling uncertainty two bootstrapping methods were applied. The developed bootstrapping-based uncertainty estimation method shows that large uncertainties are associated with the estimation of bivariate flood quantiles. This uncertainty is much larger than the model selection and fitting uncertainty. Given the rather long data series of 88 years, it is concluded that bivariate flood frequency analysis is expected to carry significant uncertainty and that the quantification and reduction of uncertainty merit greater attention. But despite this uncertainty the proposed approach has certainly major advantages compared to a univariate approach, because (a) it reflects the two essential aspects of floods in this region, (b) the uncertainties are inherent for every bivariate frequency analysis in hydrology due to the general limited length of observations and can hardly be avoided, and (c) a framework for the quantification of the uncertainties is given, which can be used and interpreted in the hazard assessment. In addition it is shown by a parametric bootstrapping experiment how longer observation time series can reduce the sampling uncertainty. Based on this finding it is concluded that bivariate frequency analyses in hydrology would greatly benefit from discharge time series augmented by proxy or historical data, or by causal hydrologic expansion of time series. (C) 2015 Elsevier B.V. All rights reserved. KW - Bivariate flood quantile KW - Copulas KW - Uncertainty estimation KW - Bootstrapping KW - Mekong Delta Y1 - 2015 U6 - https://doi.org/10.1016/j.jhydrol.2015.05.033 SN - 0022-1694 SN - 1879-2707 VL - 527 SP - 704 EP - 717 PB - Elsevier CY - Amsterdam ER -