TY - JOUR A1 - Fernandez, Ricardo A1 - Gonzalez-Doncel, Gaspar A1 - Garces, Gerardo A1 - Bruno, Giovanni T1 - Towards a comprehensive understanding of creep BT - microstructural dependence of the pre-exponential term in Al JF - Materials science & engineering. A, Structural materials: properties, microstructure and processing N2 - We show that the equation proposed by Takeuchi and Argon to explain the creep behavior of Al-Mg solid solution can be used to describe also the creep behavior of pure aluminum. In this frame, it is possible to avoid the use of the classic pre-exponential fitting parameter in the power law equation to predict the minimum creep strain rate. The effect of the fractal arrangement of dislocations, developed at the mesoscale, must be considered to fully explain the experimental data. These ideas allow improving the recently introduced SSTC model, fully describing the primary and secondary creep regimes of aluminum alloys without the need for fitting. Creep data from commercially pure A199.8% and Al-Mg alloys tested at different temperatures and stresses are used to validate the proposed ideas. KW - creep KW - Aluminum alloys KW - dislocations KW - fractal KW - stress exponent Y1 - 2020 U6 - https://doi.org/10.1016/j.msea.2020.139036 SN - 0921-5093 SN - 1873-4936 VL - 776 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Koos, R. A1 - Sevostianov, Igor A1 - Garcés, Gonzales A1 - Requena, Guillermo A1 - Fernandez, R. A1 - Bruno, Giovanni T1 - The role of intermetallics in stress partitioning and damage evolution of AlSil2CuMgNi alloy JF - Materials Science and Engineering: A-Structural materials: properties, microstructure and processing N2 - Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load. KW - Aluminum alloys KW - Neutron diffraction KW - Micromechanical modeling KW - Internal stress KW - Damage KW - Computed tomography Y1 - 2018 U6 - https://doi.org/10.1016/j.msea.2018.08.070 SN - 0921-5093 SN - 1873-4936 VL - 736 SP - 453 EP - 464 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Fernandez, Ricardo A1 - Bruno, Giovanni A1 - Garces, Gerardo A1 - Nieto-Luis, H. A1 - Gonzalez-Doncel, Gaspar T1 - Fractional brownian motion of dislocations during creep deformation of metals JF - Materials science & engineering. A, Structural materials N2 - The present work offers an explanation on how the long-range interaction of dislocations influences their movement, and therefore the strain, during creep of metals. It is proposed that collective motion of dislocations can be described as a fractional Brownian motion. This explains the noisy appearance of the creep strain signal as a function of time. Such signal is split into a deterministic and a stochastic part. These terms can be related to two kinds of dislocation motions: individual and collective, respectively. The description is consistent with the fractal nature of strain-induced dislocation structures predicated in previous works. Moreover, it encompasses the evolution of the strain rate during all stages of creep, including the tertiary one. Creep data from Al99.8% and Al3.85%Mg tested at different temperatures and stresses are used to validate the proposed ideas: it is found that different creep stages present different diffusion characters, and therefore different dislocation motion character. KW - Creep KW - Aluminum alloys KW - Dislocation motion KW - Diffusion KW - Fractal KW - structures Y1 - 2020 U6 - https://doi.org/10.1016/j.msea.2020.140013 SN - 0921-5093 SN - 1873-4936 VL - 796 PB - Elsevier CY - Lausanne ER -