TY - JOUR A1 - Seelig, Stefan A. A1 - Rabe, Maximilian Michael A1 - Malem-Shinitski, Noa A1 - Risse, Sarah A1 - Reich, Sebastian A1 - Engbert, Ralf T1 - Bayesian parameter estimation for the SWIFT model of eye-movement control during reading JF - Journal of mathematical psychology N2 - Process-oriented theories of cognition must be evaluated against time-ordered observations. Here we present a representative example for data assimilation of the SWIFT model, a dynamical model of the control of fixation positions and fixation durations during natural reading of single sentences. First, we develop and test an approximate likelihood function of the model, which is a combination of a spatial, pseudo-marginal likelihood and a temporal likelihood obtained by probability density approximation Second, we implement a Bayesian approach to parameter inference using an adaptive Markov chain Monte Carlo procedure. Our results indicate that model parameters can be estimated reliably for individual subjects. We conclude that approximative Bayesian inference represents a considerable step forward for computational models of eye-movement control, where modeling of individual data on the basis of process-based dynamic models has not been possible so far. KW - dynamical models KW - reading KW - eye movements KW - saccades KW - likelihood function KW - Bayesian inference KW - MCMC KW - interindividual differences Y1 - 2020 U6 - https://doi.org/10.1016/j.jmp.2019.102313 SN - 0022-2496 SN - 1096-0880 VL - 95 PB - Elsevier CY - San Diego ER -