TY - JOUR A1 - Rohner, Fabian A1 - Garrett, Greg S. A1 - Laillou, Arnaud A1 - Frey, Simone K. A1 - Mothes, Ralf A1 - Schweigert, Florian J. A1 - Locatelli-Rossi, Lorenzo T1 - Validation of a user-friendly and rapid method for quantifying iodine content of salt JF - Food and nutrition bulletin N2 - Background. Despite considerable progress made in the past decade through salt iodization programs, over 2 billion people worldwide still have inadequate iodine intake, with devastating consequences for brain development and intellectual capacity. To optimize these programs with regard to salt iodine content, careful monitoring of salt iodine content is essential, but few methods are available to quantitatively measure iodine concentration in a simple, fast, and safe way. Objective. We have validated a newly developed device that quantitatively measures the content of potassium iodate in salt in a simple, safe, and rapid way. Methods. The linearity, determination and detection limit, and inter- and intra-assay variability of this colorimetric method were assessed and the method was compared with iodometric titration, using salt samples from several countries. Results. Linearity of analysis ranged from 5 to 75 mg/kg iodine, with I mg/kg being the determination limit; the intra- and interassay imprecision was 0.9%, 0.5%, and 0.7% and 1.5%, 1.7%, and 2.5% for salt samples with iodine contents of 17, 30, and 55 mg/kg, respectively; the interoperator imprecision for the same samples was 1.2%, 4.9%, and 4.7%, respectively. Comparison with the iodometric method showed high agreement between the methods (R-2 = 0.978; limits of agreement, -10.5 to 10.0 mg/kg). Conclusions. The device offers a field- and user-friendly solution to quantifying potassium iodate salt content reliably. For countries that use potassium iodide in salt iodization programs, further validation is required. KW - Iodization KW - iodine KW - monitoring KW - potassium iodate KW - quality control KW - rapid test kit KW - regulatory monitoring KW - salt Y1 - 2012 SN - 0379-5721 VL - 33 IS - 4 SP - S330 EP - S335 PB - International Nutrition Foundation CY - Boston ER - TY - JOUR A1 - Fitzner, Maria A1 - Fricke, Anna A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Utilization of regional natural brines for the indoor cultivation of Salicornia europaea JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - Scaling agriculture to the globally rising population demands new approaches for future crop production such as multilayer and multitrophic indoor farming. Moreover, there is a current trend towards sustainable local solutions for aquaculture and saline agriculture. In this context, halophytes are becoming increasingly important for research and the food industry. As Salicornia europaea is a highly salt-tolerant obligate halophyte that can be used as a food crop, indoor cultivation with saline water is of particular interest. Therefore, finding a sustainable alternative to the use of seawater in non-coastal regions is crucial. Our goal was to determine whether natural brines, which are widely distributed and often available in inland areas, provide an alternative water source for the cultivation of saline organisms. This case study investigated the potential use of natural brines for the production of S. europaea. In the control group, which reflects the optimal growth conditions, fresh weight was increased, but there was no significant difference between the treatment groups comparing natural brines with artificial sea water. A similar pattern was observed for carotenoids and chlorophylls. Individual components showed significant differences. However, within treatments, there were mostly no changes. In summary, we showed that the influence of the different chloride concentrations was higher than the salt composition. Moreover, nutrient-enriched natural brine was demonstrated to be a suitable alternative for cultivation of S. europaea in terms of yield and nutritional quality. Thus, the present study provides the first evidence for the future potential of natural brine waters for the further development of aquaculture systems and saline agriculture in inland regions. KW - carotenoids KW - glasswort KW - land-based aquaculture KW - seawater KW - phytochemicals KW - halophytes KW - salt composition KW - chlorophylls KW - artificial KW - salt KW - saline agriculture Y1 - 2021 U6 - https://doi.org/10.3390/su132112105 SN - 2071-1050 VL - 13 IS - 21 PB - MDPI CY - Basel ER -