TY - JOUR A1 - Mühlbauer, Thomas A1 - Mettler, Claude A1 - Roth, Ralf A1 - Granacher, Urs T1 - One-leg standing performance and muscle activity: Are there limb differences? JF - Journal of applied biomechanics N2 - The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 +/- 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P < .001, effect size [ES] = .57-2.54) and increased muscle activity (P < .001, ES = .50-1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P > .05, ES = .06-.22) and electromyographic (P > .05, ES = .03-.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults. KW - postural control KW - electromyography KW - sensory input KW - task difficulty Y1 - 2014 U6 - https://doi.org/10.1123/jab.2013-0230 SN - 1065-8483 SN - 1543-2688 VL - 30 IS - 3 SP - 407 EP - 414 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Borde, Ron A1 - Gube, M. A1 - Bruhn, S. A1 - Behm, David George A1 - Granacher, Urs T1 - Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability JF - Learning and individual differences N2 - Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 +/- 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band (R) Stability Trainer, Togu (c) Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P<0.05, d=0.86), 10-20-m sprint time (3%, P<0.05, d=2.56), and kicking performance (1%, P<0.01, d=1.28). No significant Groupxtest interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training. KW - Elite sports KW - jumping KW - agility KW - sprint KW - ball speed KW - electromyography Y1 - 2016 U6 - https://doi.org/10.1111/sms.12403 SN - 0905-7188 SN - 1600-0838 VL - 26 SP - 48 EP - 56 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wochatz, Monique A1 - Rabe, Sophie A1 - Wolter, Martin A1 - Engel, Tilman A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Muscle activity of upper and lower trapezius and serratus anterior during unloaded and maximal loaded shoulder flexion and extension JF - International Biomechanics N2 - Altered scapular muscle activity is mostly described under unloaded and submaximal loaded conditions in impingement patients. However, there is no clear evidence on muscle activity with respect to movement phases under maximum load in healthy subjects. Therefore, this study aimed to investigate scapular muscle activity under unloaded and maximum loaded isokinetic shoulder flexion and extension in regard to the movement phase. Fourteen adults performed unloaded (continuous passive motion [CPM]) as well as maximum loaded (concentric [CON], eccentric [ECC]) isokinetic shoulder flexion (Flex) and extension (Ext). Simultaneously, scapular muscle activity was measured by EMG. Root mean square was calculated for the whole ROM and four movement phases. Data were analyzed descriptively and by two-way repeated measures ANOVA. CPMFlex resulted in a linear increase of muscle activity for all muscles. Muscle activity during CONFlex and ECCFlex resulted in either constant activity levels or in an initial increase followed by a plateau in the second half of movement. CPMExt decreased with the progression of movement, whereas CONExt and ECCExt initially decreased and either levelled off or increased in the second half of movement. Scapular muscle activity of unloaded shoulder flexion and extension changed under maximum load showing increased activity levels and an altered pattern over the course of movement. KW - shoulder KW - scapular muscle activity KW - isokinetic testing KW - electromyography Y1 - 2017 U6 - https://doi.org/https://doi.org/10.1080/23335432.2017.1364668 VL - 4 IS - 2 SP - 68 EP - 76 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Anvari, Maryam A1 - Granacher, Urs T1 - Long-term effects of shoe mileage on ground reaction forces and lower limb muscle activities during walking in individuals with genu varus JF - Clinical biomechanics N2 - Background: Shoe mileage is an important factor that may influence the risk of sustaining injuries during walking. The aims of this study were to examine the effects of shoe mileage on ground reaction forces and activity of lower limb muscles during walking in genu varus individuals compared with controls. Methods: Fifteen healthy and 15 genu varus females received a new pair of running shoes. They were asked to wear these shoes over 6 months. Pre and post intervention, mechanical shoe testing was conducted and ground reaction forces and muscle activities of the right leg were recorded during walking at preferred gait speed. Findings: Significant group-by-time interactions were found for shoe stiffness, antero-posterior and vertical impact peak. We observed higher shoe stiffness and lower impact peaks after intervention in both groups with larger effect sizes in genu varus. Significant group-by-time interactions were identified for vastus medialis (loading phase) and rectus femoris (loading and push-off). For vastus medialis, significant decreases were found from pre-to-post during the loading phase in the control group. Rectus femoris activity was higher post intervention during the loading and push-off phases in both groups with larger effect sizes in genu varus. Interpretation: Our findings indicate that the observed changes in ground reaction forces are more prominent in genu varus individuals. Together with our findings on shoe stiffness, it seems appropriate to change running shoes after an intense wearing time of 6 months, particularly in genu varus individuals. KW - footwear KW - electromyography KW - loading rate KW - patients Y1 - 2020 U6 - https://doi.org/10.1016/j.clinbiomech.2020.01.006 SN - 0268-0033 SN - 1879-1271 VL - 73 SP - 55 EP - 62 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Prieske, Olaf A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Intrasession and intersession reliability in maximal and explosive isometric torque production of the elbow flexors JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - The purpose of this study was to assess intrasession and intersession reliability of maximal and explosive isometric torque production of the elbow flexors and its respective neuromuscular activation pattern. Subjects (13 men, age: 24.8 +/- 3.1 years, height: 1.9 +/- 0.1 m, body mass: 83.7 +/- 12.7 kg; and 6 women, age: 26.5 +/- 1.4 years, height: 1.7 +/- 0.1 m, body mass: 62.7 +/- 7.0 kg) were tested and retested 2-7 days later performing unilateral maximal isometric elbow flexions. Absolute (coefficient of variation[CV], test-retest variability[TRV], Bland-Altman plots with 95% limits of agreement) and relative reliability statistics (intraclass correlation coefficient) were calculated for various mechanical (i.e., maximal isometric torque, rate of torque development, impulse) and electromyographical measures (i.e., mean average voltage) at different time intervals relative to onset of torque (i. e., 30, 50, 100, 200, 300, 400, 100-200 ms). Intraclass correlation coefficient values were >= 0.61 for all mechanical and electromyographical measures and time intervals indicating good to excellent intrasession and intersession reliability. BlandAltman plots confirmed these findings by showing that only 0-2 (<= 3.3%) data points were beyond the limits of agreement. Regarding torque and electromyographic measures, CV (11.9-32.3%) and TRV (18.4-53.8%) values were high during the early intervals of torque development (<= 100 ms) indicating high variability. During the later intervals (>100 ms), lower CV (i. e., 5.0-29.9%) and TRV values (i.e., 5.4-34.6%) were observed indicating lower variability. The present study revealed that neuromuscular performance during explosive torque production of the elbow flexors is reproducible in time intervals >100 ms after onset of isometric actions, whereas during earlier time intervals variability is high. KW - maximal isometric contraction KW - explosive force production KW - electromyography KW - test-retest reliability Y1 - 2014 SN - 1064-8011 SN - 1533-4287 VL - 28 IS - 6 SP - 1771 EP - 1777 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Quarmby, Andrew A1 - Mönnig, Jamal A1 - Mugele, Hendrik A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Cassel, Michael A1 - Engel, Tilman T1 - Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review JF - Frontiers in Sports and Active Living N2 - Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of “medial collapse”. Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn. KW - achilles tendinopathy KW - biomechanics KW - neuromuscular KW - kinetics KW - electromyography KW - athletes KW - runners KW - kinematics Y1 - 2023 U6 - https://doi.org/10.3389/fspor.2022.1012471 SN - 2624-9367 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Jararnezhadgero, AmirAli A1 - Mamashli, Elaheh A1 - Granacher, Urs T1 - An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy JF - Frontiers in physiology / Frontiers Research Foundation N2 - Background: The prevalence of diabetes worldwide is predicted to increase from 2.8% in 2000 to 4.4% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45–65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40–55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001–0.037; d = 0.56–1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001–0.044; d = 0.54–0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics. KW - oxygen consumption KW - kinetics KW - electromyography KW - diabetic KW - gait Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.654755 SN - 1664-042X VL - 12 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Zinke, Fridolin A1 - Gebel, Arnd A1 - Granacher, Urs A1 - Prieske, Olaf T1 - Acute Effects of Short-Term Local Tendon Vibration on Plantar Flexor Torque, Muscle Contractile Properties, Neuromuscular and Brain Activity in Young Athletes JF - Journal of sports science & medicine N2 - The purpose of this study was to examine the acute effects of short-term Achilles tendon vibration on plantar flexor torque, twitch contractile properties as well as muscle and cortical activity in young athletes. Eleven female elite soccer players aged 15.6 +/- 0.5 years participated in this study. Three different conditions were applied in randomized order: Achilles tendon vibration (80 Hz) for 30 and 300 s, and a passive control condition (300 s). Tests at baseline and following conditions included the assessment of peak plantar flexor torque during maximum voluntary contraction, electrically evoked muscle twitches (e.g., potentiated twitch peak torque [PT]), and electromyographic (EMG) activity of the plantar flexors. Additionally, electroencephalographic (EEG) activity of the primary motor and somatosensory cortex were assessed during a submaximal dynamic concentric-eccentric plantar flexion exercise using an elastic rubber band. Large-sized main effects of condition were found for EEG absolute alpha-1 and beta-1 band power (p <= 0.011; 1.5 <= d <= 2.6). Post-hoc tests indicated that alpha-1 power was significantly lower at 30 and 300 s (p = 0.009; d = 0.8) and beta-1 power significantly lower at 300 s (p < 0.001; d = 0.2) compared to control condition. No significant effect of condition was found for peak plantar flexor torque, electrical evoked muscle twitches, and EMG activity. In conclusion, short-term local Achilles tendon vibration induced lower brain activity (i.e., alpha-1 and beta-1 band power) but did not affect lower limb peak torque, twitch contractile properties, and muscle activity. Lower brain activity following short-term local Achilles tendon vibration may indicate improved cortical function during a submaximal dynamic exercise in female young soccer players. KW - Postactivation potentiation KW - electromyography KW - electroencephalography KW - maximum voluntary contraction KW - soccer Y1 - 2019 SN - 1303-2968 VL - 18 IS - 2 SP - 327 EP - 336 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER -