TY - JOUR A1 - Pavillon, Thomas A1 - Tourny, Claire A1 - Aabderrahman, Abderraouf Ben A1 - Salhi, Iyed A1 - Zouita, Sghaeir A1 - Rouissi, Mehdi A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Sprint and jump performances in highly trained young soccer players of different chronological age BT - Effects of linear VS. CHANGE–OF–DIRECTION sprint training JF - Journal of Exercise Science & Fitness N2 - Objective The aim of this study was to examine the effects of two different sprint-training regimes on sprint and jump performances according to age in elite young male soccer players over the course of one soccer season. Methods Players were randomly assigned to two training groups. Group 1 performed systematic change-of-direction sprints (CODST, U19 [n = 9], U17 [n = 9], U15 [n = 10]) while group 2 conducted systematic linear sprints (LST, U19 [n = 9], U17 [n = 9], U15 [n = 9]). Training volumes were similar between groups (40 sprints per week x 30 weeks = 1200 sprints per season). Pre and post training, all players performed tests for the assessment of linear and slalom sprint speed (5-m and 10-m), countermovement jump, and maximal aerobic speed performance. Results For all physical fitness measures, the baseline-adjusted means data (ANCOVA) across the age groups showed no significant differences between LST and CODST at post (0.061 < p < 0.995; 0.0017 < d < 1.01). The analyses of baseline-adjusted means for all physical fitness measures for U15, U17, and U19 (LST vs. CODST) revealed no significant differences between LST and CODST for U15 (0.213 < p < 0.917; 0.001 < d < 0.087), U17 (0.132 < p < 0.976; 0.001 < d < 0.310), and U19 (0.300 < p < 0.999; 0.001 < d < 0.049) at post. Conclusions The results from this study showed that both, LST and CODST induced significant changes in the sprint, lower limbs power, and aerobic performances in young elite soccer players. Since no significant differences were observed between LST and CODST, the observed changes are most likely due to training and/or maturation. Therefore, more research is needed to elucidate whether CODST, LST or a combination of both is beneficial for youth soccer athletes’ performance development. KW - Football KW - Repeated sprint KW - Performance KW - Speed Y1 - 2020 U6 - https://doi.org/10.1016/j.jesf.2020.10.003 SN - 1728-869x VL - 19 IS - 2 SP - 81 EP - 90 PB - Elsevier CY - Singapore ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Baur, Heiner A1 - Mayer, Frank T1 - Intra-individual gait speed variability in healthy children aged 1-15 years JF - Gait & posture N2 - Introduction: Gait speed is one of the most commonly and frequently used parameters to evaluate gait development. It is characterized by high variability when comparing different steps in children. The objective of this study was to determine intra-individual gait speed variability in children. Methods: Gait speed measurements (6-10 trials across a 3 m walkway) were performed and analyzed in 8263 children, aged 1-15 years. The coefficient of variation (CV) served as a measure for intra-individual gait speed variability measured in 6.6 +/- 1.0 trials per child. Multiple linear regression analysis was conducted to evaluate the influence of age and body height on changes in variability. Additionally, a subgroup analysis for height within the group of 6-year-old children was applied. Results: A successive reduction in gait speed variability (CV) was observed for age groups (age: 1-15 years) and body height groups (height: 0.70-1.90 m). The CV in the oldest subjects was only one third of the CV (CV 6.25 +/- 3.52%) in the youngest subjects (CV 16.58 +/- 10.01%). Up to the age of 8 years (or 1.40 m height) there was a significant reduction in CV over time, compared to a leveling off for the older (taller) children. Discussion: The straightforward approach measuring gait speed variability in repeated trials might serve as a fundamental indicator for gait development in children. Walking velocity seems to increase to age 8. Enhanced gait speed consistency of repeated trials develops up to age 15. KW - Development KW - Gait KW - Speed KW - Variability KW - Children Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2013.02.011 SN - 0966-6362 SN - 1879-2219 VL - 38 IS - 4 SP - 631 EP - 636 PB - Elsevier CY - Clare ER -