TY - JOUR A1 - Mohr, Christian Heinrich A1 - Manga, Michael A1 - Wang, Chi-Yuen A1 - Korup, Oliver T1 - Regional changes in streamflow after a megathrust earthquake JF - Earth & planetary science letters N2 - Moderate to large earthquakes can increase the amount of water feeding stream flows, mobilizing excess water from deep groundwater, shallow groundwater, or the vadose zone. Here we examine the regional pattern of streamflow response to the Maule M8.8 earthquake across Chile's diverse topographic and hydro-climatic gradients. We combine streamflow analyses with groundwater flow modeling and a random forest classifier, and find that, after the earthquake, at least 85 streams had a change in flow. Discharge mostly increased () shortly after the earthquake, liberating an excess water volume of >1.1 km3, which is the largest ever reported following an earthquake. Several catchments had increased discharge of >50 mm, locally exceeding seasonal streamflow discharge under undisturbed conditions. Our modeling results favor enhanced vertical permeability induced by dynamic strain as the most probable process explaining the observed changes at the regional scale. Supporting this interpretation, our random forest classification identifies peak ground velocity and elevation extremes as most important for predicting streamflow response. Given the mean recurrence interval of ∼25 yr for >M8.0 earthquakes along the Peru–Chile Trench, our observations highlight the role of earthquakes in the regional water cycle, especially in arid environments. KW - Maule earthquake KW - streamflow response KW - permeability KW - groundwater flow modeling KW - earthquake hydrology Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.11.013 SN - 0012-821X SN - 1385-013X VL - 458 SP - 418 EP - 428 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wetzel, Maria A1 - Kempka, Thomas A1 - Kühn, Michael T1 - Hydraulic and mechanical impacts of pore space alterations within a sandstone quantified by a flow velocity-dependent precipitation approach JF - Materials N2 - Geochemical processes change the microstructure of rocks and thereby affect their physical behaviour at the macro scale. A micro-computer tomography (micro-CT) scan of a typical reservoir sandstone is used to numerically examine the impact of three spatial alteration patterns on pore morphology, permeability and elastic moduli by correlating precipitation with the local flow velocity magnitude. The results demonstrate that the location of mineral growth strongly affects the permeability decrease with variations by up to four orders in magnitude. Precipitation in regions of high flow velocities is characterised by a predominant clogging of pore throats and a drastic permeability reduction, which can be roughly described by the power law relation with an exponent of 20. A continuous alteration of the pore structure by uniform mineral growth reduces the permeability comparable to the power law with an exponent of four or the Kozeny-Carman relation. Preferential precipitation in regions of low flow velocities predominantly affects smaller throats and pores with a minor impact on the flow regime, where the permeability decrease is considerably below that calculated by the power law with an exponent of two. Despite their complete distinctive impact on hydraulics, the spatial precipitation patterns only slightly affect the increase in elastic rock properties with differences by up to 6.3% between the investigated scenarios. Hence, an adequate characterisation of the spatial precipitation pattern is crucial to quantify changes in hydraulic rock properties, whereas the present study shows that its impact on elastic rock parameters is limited. The calculated relations between porosity and permeability, as well as elastic moduli can be applied for upscaling micro-scale findings to reservoir-scale models to improve their predictive capabilities, what is of paramount importance for a sustainable utilisation of the geological subsurface. KW - Bentheim sandstone KW - digital rock physics KW - micro-CT KW - elastic properties KW - permeability KW - precipitation Y1 - 2020 U6 - https://doi.org/10.3390/ma13143100 SN - 1996-1944 VL - 13 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Cheng, Chaojie A1 - Milsch, Harald T1 - Evolution of fracture aperture in quartz sandstone under hydrothermal conditions BT - mechanical and chemical effects JF - Minerals N2 - Fractures efficiently affect fluid flow in geological formations, and thereby determine mass and energy transport in reservoirs, which are not least exploited for economic resources. In this context, their response to mechanical and thermal changes, as well as fluid-rock interactions, is of paramount importance. In this study, a two-stage flow-through experiment was conducted on a pure quartz sandstone core of low matrix permeability, containing one single macroscopic tensile fracture. In the first short-term stage, the effects of mechanical and hydraulic aperture on pressure and temperature cycles were investigated. The purpose of the subsequent intermittent-flow long-term (140 days) stage was to constrain the evolution of the geometrical and hydraulic fracture properties resulting from pressure solution. Deionized water was used as the pore fluid, and permeability, as well as the effluent Si concentrations, were systematically measured. Overall, hydraulic aperture was shown to be significantly less affected by pressure, temperature and time, in comparison to mechanical aperture. During the long-term part of the experiment at 140 degrees C, the effluent Si concentrations likely reached a chemical equilibrium state within less than 8 days of stagnant flow, and exceeded the corresponding hydrostatic quartz solubility at this temperature. This implies that the pressure solution was active at the contacting fracture asperities, both at 140 degrees C and after cooling to 33 degrees C. The higher temperature yielded a higher dissolution rate and, consequently, a faster attainment of chemical equilibrium within the contact fluid. X-ray mu CT observations evidenced a noticeable increase in fracture contact area ratio, which, in combination with theoretical considerations, implies a significant decrease in mechanical aperture. In contrast, the sample permeability, and thus the hydraulic fracture aperture, virtually did not vary. In conclusion, pressure solution-induced fracture aperture changes are affected by the degree of time-dependent variations in pore fluid composition. In contrast to the present case of a quasi-closed system with mostly stagnant flow, in an open system with continuous once-through fluid flow, the activity of the pressure solution may be amplified due to the persistent fluid-chemical nonequilibrium state, thus possibly enhancing aperture and fracture permeability changes. KW - flow-through experiment KW - fracture aperture KW - pressure solution KW - mass KW - transfer KW - silica concentration KW - permeability KW - quartz sandstone Y1 - 2020 U6 - https://doi.org/10.3390/min10080657 SN - 2075-163X VL - 10 IS - 8 PB - MDPI CY - Basel ER -