TY - JOUR A1 - Zhang, Quanchao A1 - Sauter, Tilman A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Shape-Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying JF - Macromolecular materials and engineering N2 - Multifunctional thermo-responsive and degradable microparticles exhibiting a shapememory effect (SME) have attracted widespread interest in biomedicine as switchable delivery vehicles or microactuators. In this work almost spherical solid microparticles with an average diameter of 3.9 +/- 0.9 mm are prepared via electrospraying of a copolyetheresterurethane named PDC, which is composed of crystallizable oligo(p-dioxanone) (OPDO) hard and oligo(e-caprolactone) (OCL) switching segments. The PDC microparticles are programmed via compression at different pressures and their shapememory capability is explored by off-line and online heating experiments. When a low programming pressure of 0.2 MPa is applied a pronounced thermally-induced shape-memory effect is achieved with a shape recovery ratio about 80%, while a high programming pressure of 100 MPa resulted in a weak shape-memory performance. Finally, it is demonstrated that an array of PDC microparticles deposited on a polypropylene (PP) substrate can be successfully programmed into a smart temporary film, which disintegrates upon heating to 60 degrees C. KW - biomaterials KW - microparticles KW - processing KW - stimuli-sensitive polymers KW - shape-memory effect Y1 - 2015 U6 - https://doi.org/10.1002/mame.201400267 SN - 1438-7492 SN - 1439-2054 VL - 300 IS - 5 SP - 522 EP - 530 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Vukicevic, Radovan A1 - Neffe, Axel T. A1 - Luetzow, Karola A1 - Pierce, Benjamin F. A1 - Lendlein, Andreas T1 - Conditional Ultrasound Sensitivity of Poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] Microgels for Controlled Lipase Release JF - Macromolecular rapid communications N2 - Triggering the release of cargo from a polymer network by ultrasonication as an external, non-invasive stimulus can be an interesting concept for on-demand release. Here, it is shown that, in pH-and thermosensitive microgels, the ultrasound sensitivity of the polymer network depends on the external conditions. Crosslinked poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] microgels showed a volume phase transition temperature (VPTT) of 25-50 degrees C, which increases with decreasing pH. Above the VPTT the polymer chains are collapsed, while below VPTT they are extended. Only in the case of maximum observed swelling, where the polymer chains are expanded, the microgels are mechanically fragmented through ultrasonication. In contrast, when the polymer chains are partially collapsed it is not possible to manipulate the microgels by ultrasound. Additionally, the ultrasound-induced on-demand release of wheat germ lipase from the microgels could be demonstrated successfully. The principle of conditional ultrasound sensitivity is likely to be general and can be used for selection of matrix-cargo combinations. KW - ultrasound KW - polymers KW - microgels KW - lipase release KW - controlled release KW - thermoresponsive polymers KW - biomaterials Y1 - 2015 U6 - https://doi.org/10.1002/marc.201500311 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 21 SP - 1891 EP - 1896 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Thielke, Michael W. A1 - Secker, Christian A1 - Schlaad, Helmut A1 - Theato, Patrick T1 - Electrospinning of Crystallizable Polypeptoid Fibers JF - Macromolecular rapid communications N2 - A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N-(n-propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at approximate to 100 degrees C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water-stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing. KW - biomaterials KW - crystallization KW - electrospinning KW - polypeptoids KW - thermoresponsive Y1 - 2016 U6 - https://doi.org/10.1002/marc.201500502 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 100 EP - 104 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Secker, Christian A1 - Brosnan, Sarah M. A1 - Luxenhofer, Robert A1 - Schlaad, Helmut T1 - Poly(alpha-Peptoid)s Revisited: Synthesis, Properties, and Use as Biomaterial JF - Macromolecular bioscience N2 - Polypeptoids have been of great interest in the polymer science community since the early half of the last century; however, they had been basically forgotten materials until the last decades in which they have enjoyed an exciting revival. In this mini-review, we focus on the recent developments in polypeptoid chemistry, with particular focus on polymers synthesized by the ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCAs). Specifically, we will review traditional monomer synthesis (such as Leuchs, Katchalski, and Kricheldorf) and recent advances in polymerization methods to yield both linear, cyclic, and functional polymers, solution and bulk thermal properties, and preliminary results on the use of polypeptoids as biomaterials (i.e immunogenicity, biodistribution, degradability, and drug delivery). KW - amino acid N-carboxyanhydride (NCA) KW - biomaterials KW - peptides KW - properties KW - ring-opening polymerization Y1 - 2015 U6 - https://doi.org/10.1002/mabi.201500023 SN - 1616-5187 SN - 1616-5195 VL - 15 IS - 7 SP - 881 EP - 891 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schneider, Matthias A1 - Günter, Christina A1 - Taubert, Andreas T1 - Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating BT - Towards Automated Biomaterials Fabrication JF - Polymers N2 - The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials. KW - 3D printing KW - dip-coating KW - poly(lactic acid) KW - PLA KW - calcium phosphate KW - gelatin KW - chitosan KW - hydrogel KW - calcium phosphate hybrid material KW - biomaterials Y1 - 2018 U6 - https://doi.org/10.3390/polym10030275 SN - 2073-4360 VL - 10 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Sauter, Tilman A1 - Geiger, Brett A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Encasement of metallic cardiovascular stents with endothelial cell-selective copolyetheresterurethane microfibers JF - Polymers for advanced technologies N2 - Cardiovascular metallic stents established in clinical application are typically coated by a thin polymeric layer on the stent struts to improve hemocompatibility, whereby often a drug is added to the coating to inhibit neointimal hyperplasia. Besides such thin film coatings recently nano/microfiber coated stents are investigated, whereby the fibrous coating was applied circumferential on stents. Here, we explored whether a thin fibrous encasement of metallic stents with preferentially longitudinal aligned fibers and different local fiber densities can be achieved by electrospinning. An elastic degradable copolyetheresterurethane, which is reported to selectively enhance the adhesion of endothelial cells, while simultaneously rejecting smooth muscle cells, was utilized for stent coating. The fibrous stent encasements were microscopically assessed regarding their single fiber diameters, fiber covered area and fiber alignment at three characteristic stent regions before and after stent expansion. Stent coatings with thicknesses in the range from 30 to 50 mu m were achieved via electrospinning with 1,1,1,3,3,3-hexafluoro-2-propanol (HFP)-based polymer solution, while a mixture of HFP and formic acid as solvent resulted in encasements with a thickness below 5 mu m comprising submicron sized single fibers. All polymeric encasements were mechanically stable during expansion, whereby the fibers deposited on the struts remained their position. The observed changes in fiber density and diameter indicated diverse local deformation mechanisms of the microfibers at the different regions between the struts. Based on these results it can be anticipated that the presented fibrous encasement of stents might be a promising alternative to stents with polymeric strut coatings releasing anti-proliferative drugs. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - multifunctional polymers KW - stent coatings KW - electrospinning KW - biomaterials KW - degradable polymers Y1 - 2015 U6 - https://doi.org/10.1002/pat.3583 SN - 1042-7147 SN - 1099-1581 VL - 26 IS - 10 SP - 1209 EP - 1216 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Neffe, Axel T. A1 - von Rüsten-Lange, Maik A1 - Braune, Steffen A1 - Lützow, Karola A1 - Roch, Toralf A1 - Richau, Klaus A1 - Jung, Friedrich A1 - Lendlein, Andreas T1 - Poly(ethylene glycol) grafting to Poly(ether imide) membranes - influence on protein adsorption and Thrombocyte adhesion JF - Macromolecular bioscience N2 - The chain length and end groups of linear PEG grafted on smooth surfaces is known to influence protein adsorption and thrombocyte adhesion. Here, it is explored whether established structure function relationships can be transferred to application relevant, rough surfaces. Functionalization of poly(ether imide) (PEI) membranes by grafting with monoamino PEG of different chain lengths (M-n=1kDa or 10kDa) and end groups (methoxy or hydroxyl) is proven by spectroscopy, changes of surface hydrophilicity, and surface shielding effects. The surface functionalization does lead to reduction of adsorption of BSA, but not of fibrinogen. The thrombocyte adhesion is increased compared to untreated PEI surfaces. Conclusively, rough instead of smooth polymer or gold surfaces should be investigated as relevant models. KW - biomaterials KW - poly(ethylene glycol) KW - protein adsorption KW - surface functionalization KW - thrombocyte adhesion Y1 - 2013 U6 - https://doi.org/10.1002/mabi.201300309 SN - 1616-5187 SN - 1616-5195 VL - 13 IS - 12 SP - 1720 EP - 1729 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Rudolph, Tobias A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Polymeric microcuboids programmable for temperature-memory JF - Macromolecular materials and engineering N2 - Microobjects with programmable mechanical functionality are highly desirable for the creation of flexible electronics, sensors, and microfluidic systems, where fabrication/programming and quantification methods are required to fully control and implement dynamic physical behavior. Here, programmable microcuboids with defined geometries are prepared by a template-based method from crosslinked poly[ethylene-co-(vinyl acetate)] elastomers. These microobjects could be programmed to exhibit a temperature-memory effect or a shape-memory polymer actuation capability. Switching temperaturesT(sw)during shape recovery of 55 +/- 2, 68 +/- 2, 80 +/- 2, and 86 +/- 2 degrees C are achieved by tuning programming temperatures to 55, 70, 85, and 100 degrees C, respectively. Actuation is achieved with a reversible strain of 2.9 +/- 0.2% to 6.7 +/- 0.1%, whereby greater compression ratios and higher separation temperatures induce a more pronounced actuation. Micro-geometry change is quantified using optical microscopy and atomic force microscopy. The realization and quantification of microparticles, capable of a tunable temperature responsive shape-change or reversible actuation, represent a key development in the creation of soft microscale devices for drug delivery or microrobotics. KW - actuation KW - atomic force microscopy KW - biomaterials KW - microparticles KW - shape-memory polymers Y1 - 2020 U6 - https://doi.org/10.1002/mame.202000333 SN - 1438-7492 SN - 1439-2054 VL - 305 IS - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hardy, John G. A1 - Torres-Rendon, Jose Guillermo A1 - Leal-Egana, Aldo A1 - Walther, Andreas A1 - Schlaad, Helmut A1 - Coelfen, Helmut A1 - Scheibel, Thomas R. T1 - Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering JF - Materials N2 - Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering. KW - spider silk KW - recombinant protein KW - biodegradable polymers KW - biomaterials KW - biomineralization KW - bone tissue engineering Y1 - 2016 U6 - https://doi.org/10.3390/ma9070560 SN - 1996-1944 VL - 9 SP - 93 EP - 108 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hardy, John G. A1 - Bertin, Annabelle A1 - Torres-Rendon, Jose Guillermo A1 - Leal-Egana, Aldo A1 - Humenik, Martin A1 - Bauer, Felix A1 - Walther, Andreas A1 - Cölfen, Helmut A1 - Schlaad, Helmut A1 - Scheibel, Thomas R. T1 - Facile photochemical modification of silk protein-based biomaterials JF - Macromolecular bioscience N2 - Silk protein-based materials show promise for application as biomaterials for tissue engineering. The simple and rapid photochemical modification of silk protein-based materials composed of either Bombyx mori silkworm silk or engineered spider silk proteins (eADF4(C16)) is reported. Radicals formed on the silk-based materials initiate the polymerization of monomers (acrylic acid, methacrylic acid, or allylamine) which functionalize the surface of the silk materials with poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), or poly(allylamine) (PAAm). To demonstrate potential applications of this type of modification, the polymer-modified silks are mineralized. The PAA- and PMAA-functionalized silks are mineralized with calcium carbonate, whereas the PAAm-functionalized silks are mineralized with silica, both of which provide a coating on the materials that may be useful for bone tissue engineering, which will be the subject of future investigations. KW - biomaterials KW - chemical modification KW - photochemistry KW - silkworm silk KW - spider silk Y1 - 2018 U6 - https://doi.org/10.1002/mabi.201800216 SN - 1616-5187 SN - 1616-5195 VL - 18 IS - 11 PB - Wiley-VCH CY - Weinheim ER -