TY - JOUR A1 - Miasnikova, Anna A1 - Laschewsky, André T1 - Influencing the phase transition temperature of poly(methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture JF - Journal of polymer science : A, Polymer chemistry N2 - The easily accessible, but virtually overlooked monomer methoxy diethylene glycol acrylate was polymerized by the RAFT method using monofunctional, difunctional, and trifunctional trithiocarbonates to afford thermoresponsive polymers exhibiting lower critical solution temperature-type phase transitions in aqueous solution. The use of the appropriate RAFT agent allowed for the preparation and systematic variation of polymers with defined molar mass, end-groups, and architecture, including amphiphilic diblock, symmetrical triblock, and triarm star-block copolymers, containing polystyrene as permanently hydrophobic constituent. The cloud points (CPs) of the various polymers proved to be sensitive to all varied parameters, namely molar mass, nature, and number of the end-groups, and the architecture, up to relatively high molar masses. Thus, CPs of the polymers can be adjusted within the physiological interesting range of 2040 degrees C. Remarkably, CPs increased with the molar mass, even when hydrophilic end groups were attached to the polymers. KW - water-soluble polymers KW - diblock copolymers KW - triblock copolymers KW - star-block copolymers KW - reversible addition fragmentation chain transfer (RAFT) KW - LCST KW - stimuli-sensitive polymers Y1 - 2012 U6 - https://doi.org/10.1002/pola.26116 SN - 0887-624X VL - 50 IS - 16 SP - 3313 EP - 3323 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Miasnikova, Anna A1 - Benitez-Montoya, Carlos Adrian A1 - Laschewsky, André T1 - Counterintuitive photomodulation of the thermal phase transition of poly(methoxy diethylene glycol acrylate) in aqueous solution by trans-cis isomerization of Copolymerized Azobenzenes JF - Macromolecular chemistry and physics N2 - The non-ionic monomer (methoxy diethylene glycol) acrylate is copolymerized with its azodye-functionalized acrylate analogue using reversible addition-fragmentation chain transfer (RAFT) polymerization. Copolymerization is increasingly difficult with increasing amounts of the azo-dye-bearing monomer. The resulting water-soluble polymers are thermosensitive, exhibiting lower critical solution temperature (LCST) behavior, which can be modulated by the photoinduced trans-cis isomerization of the dye. While already small contents of the hydrophobic azobenzene group reduce the phase-transition temperatures of the copolymers strongly, photoisomerization of the apolar trans-state to the more-polar cis-state has only a small effect, and decreases rather than increases the cloud points. KW - azobenzene KW - photoisomerization KW - statistical copolymers KW - thermoresponsive materials KW - water-soluble polymers Y1 - 2013 U6 - https://doi.org/10.1002/macp.201300203 SN - 1022-1352 VL - 214 IS - 13 SP - 1504 EP - 1514 PB - Wiley-VCH CY - Weinheim ER -