TY - CHAP A1 - Stephan, Mareike Sophia A1 - Barbirz, Stefanie A1 - Robinson, Tom A1 - Yandrapalli, Naresh A1 - Dimova, Rumiana T1 - Bacterial mimetic systems for studying bacterial inactivation and infection BT - Meeting abstract: 65th Annual Meeting of the Biophysical Society (BPS), Feb. 22-26, 2021 T2 - Biophysical journal : BJ / ed. by the Biophysical Society Y1 - 2021 U6 - https://doi.org/10.1016/j.bpj.2020.11.1087 SN - 0006-3495 SN - 1542-0086 VL - 120 IS - 3 SP - 148A EP - 148A PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Stephan, Mareike Sophia A1 - Bröker, Nina K. A1 - Saragliadis, Athanasios A1 - Roos, Norbert A1 - Linke, Dirk A1 - Barbirz, Stefanie T1 - In vitro analysis of O-antigen-specific bacteriophage P22 inactivation by Salmonella outer membrane vesicles JF - Frontiers in microbiology N2 - Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions ofSalmonella(S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host.In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system. KW - bacteriophage KW - bacterial outer membrane vesicles KW - O-antigen KW - bacterial KW - membrane fractionation KW - Salmonella KW - lipopolysaccharide Y1 - 2020 U6 - https://doi.org/10.3389/fmicb.2020.510638 SN - 1664-302X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Georgiev, Vasil N. A1 - Grafmüller, Andrea A1 - Bléger, David A1 - Hecht, Stefan A1 - Kunstmann, Sonja A1 - Barbirz, Stefanie A1 - Lipowsky, Reinhard A1 - Dimova, Rumiana T1 - Area increase and budding in giant vesicles triggered by light BT - behind the scene JF - Advanced science N2 - Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 mu m). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology. KW - azobenzene KW - lipid membranes KW - molecular dynamics KW - photoswitch KW - vesicles Y1 - 2018 U6 - https://doi.org/10.1002/advs.201800432 SN - 2198-3844 VL - 5 IS - 8 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kunstmann, Ruth Sonja A1 - Gohlke, Ulrich A1 - Bröker, Nina Kristin A1 - Roske, Yvette A1 - Heinemann, Udo A1 - Santer, Mark A1 - Barbirz, Stefanie T1 - Solvent networks tune thermodynamics of oligosaccharide complex formation in an extended protein binding site JF - Journal of the American Chemical Society N2 - The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site. Y1 - 2018 U6 - https://doi.org/10.1021/jacs.8b03719 SN - 0002-7863 VL - 140 IS - 33 SP - 10447 EP - 10455 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Dunsing, Valentin A1 - Irmscher, Tobias A1 - Barbirz, Stefanie A1 - Chiantia, Salvatore T1 - Microviscosity of bacterial biofilm matrix characterized by fluorescence correlation spectroscopy and single particle tracking T2 - European biophysics journal : with biophysics letters ; an international journal of biophysics Y1 - 2019 U6 - https://doi.org/https://doi.org/10.1007/s00249-019-01373-4 SN - 0175-7571 SN - 1432-1017 VL - 48 SP - S115 EP - S115 PB - Springer CY - New York ER - TY - JOUR A1 - Broeker, Nina K. A1 - Roske, Yvette A1 - Valleriani, Angelo A1 - Stephan, Mareike Sophia A1 - Andres, Dorothee A1 - Koetz, Joachim A1 - Heinemann, Udo A1 - Barbirz, Stefanie T1 - Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail JF - The journal of biological chemistry N2 - Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches. KW - bacteriophage KW - lipopolysaccharide (YLPS) KW - structural biology KW - DNA viruses KW - glycobiology KW - fluorescence KW - Salmonella enterica KW - contractile tail KW - DNA ejection KW - O-antigen specificity KW - Salmonella myovirus KW - tailspike protein KW - molecular machine Y1 - 2019 U6 - https://doi.org/10.1074/jbc.RA119.008133 SN - 1083-351X VL - 294 IS - 31 SP - 11751 EP - 11761 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Dunsing, Valentin A1 - Irmscher, Tobias A1 - Barbirz, Stefanie A1 - Chiantia, Salvatore T1 - Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Biofilms are complex mixtures of proteins, DNA, and polysaccharides surrounding bacterial communities as protective barriers that can be biochemically modified during the bacterial life cycle. However, their compositional heterogeneity impedes a precise analysis of the contributions of individual matrix components to the biofilm structural organization. To investigate the structural properties of glycan-based biofilms, we analyzed the diffusion dynamics of nanometer-sized objects in matrices of the megadalton-sized anionic polysaccharide, stewartan, the major biofilm component of the plant pathogen, Pantoea stewartii. Fluorescence correlation spectroscopy and single-particle tracking of nanobeads and bacteriophages indicated notable subdiffusive dynamics dependent on probe size and stewartan concentration, in contrast to free diffusion of small molecules. Stewartan enzymatic depolymerization by bacteriophage tailspike proteins rapidly restored unhindered diffusion. We, thus, hypothesize that the glycan polymer stewartan determines the major physicochemical properties of the biofilm, which acts as a selective diffusion barrier for nanometer-sized objects and can be controlled by enzymes. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b00938 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 10 SP - 3842 EP - 3854 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Broeker, Nina K. A1 - Barbirz, Stefanie T1 - Not a barrier but a key: How bacteriophages exploit host's O‐antigen as an essential receptor to initiate infection T2 - Molecular microbiology N2 - Tailed bacteriophages specific for Gram‐negative bacteria encounter lipopolysaccharide (LPS) during the first infection steps. Yet, it is not well understood how biochemistry of these initial interactions relates to subsequent events that orchestrate phage adsorption and tail rearrangements to initiate cell entry. For many phages, long O‐antigen chains found on the LPS of smooth bacterial strains serve as essential receptor recognized by their tailspike proteins (TSP). Many TSP are depolymerases and O‐antigen cleavage was described as necessary step for subsequent orientation towards a secondary receptor. However, O‐antigen specific host attachment must not always come along with O‐antigen degradation. In this issue of Molecular Microbiology Prokhorov et al. report that coliphage G7C carries a TSP that deacetylates O‐antigen but does not degrade it, whereas rough strains or strains lacking O‐antigen acetylation remain unaffected. Bacteriophage G7C specifically functionalizes its tail by attaching the deacetylase TSP directly to a second TSP that is nonfunctional on the host's O‐antigen. This challenges the view that bacteriophages use their TSP only to clear their way to a secondary receptor. Rather, O‐antigen specific phages may employ enzymatically active TSP as a tool for irreversible LPS membrane binding to initiate subsequent infection steps. Y1 - 2017 U6 - https://doi.org/10.1111/mmi.13729 SN - 0950-382X SN - 1365-2958 VL - 105 SP - 353 EP - 357 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kang, Yu A1 - Gohlke, Ulrich A1 - Engström, Olof A1 - Hamark, Christoffer A1 - Scheidt, Tom A1 - Kunstmann, Ruth Sonja A1 - Heinemann, Udo A1 - Widmalm, Göran A1 - Santer, Mark A1 - Barbirz, Stefanie T1 - Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions JF - Journal of the American Chemical Society N2 - Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system. Y1 - 2016 U6 - https://doi.org/10.1021/jacs.6b00240 SN - 0002-7863 VL - 138 SP - 9109 EP - 9118 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schmidt, Andreas A1 - Rabsch, Wolfgang A1 - Bröker, Nina Kristin A1 - Barbirz, Stefanie T1 - Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens JF - BMC microbiology N2 - Background: Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results: We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions: Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production. KW - Salmonella Typhimurium KW - O-antigen KW - Tailspike protein KW - Bacteriophage KW - Phase variation KW - O-serotyping KW - Flow cytometry Y1 - 2016 U6 - https://doi.org/10.1186/s12866-016-0826-0 SN - 1471-2180 VL - 16 SP - 2214 EP - 2226 PB - BioMed Central CY - London ER -