TY - JOUR A1 - Giewekemeyer, K. A1 - Krueger, S. P. A1 - Kalbfleisch, S. A1 - Bartels, Meike A1 - Beta, Carsten A1 - Salditt, T. T1 - X-ray propagation microscopy of biological cells using waveguides as a quasipoint source JF - Physical review : A, Atomic, molecular, and optical physics N2 - We have used x-ray waveguides as highly confining optical elements for nanoscale imaging of unstained biological cells using the simple geometry of in-line holography. The well-known twin-image problem is effectively circumvented by a simple and fast iterative reconstruction. The algorithm which combines elements of the classical Gerchberg-Saxton scheme and the hybrid-input-output algorithm is optimized for phase-contrast samples, well-justified for imaging of cells at multi-keV photon energies. The experimental scheme allows for a quantitative phase reconstruction from a single holographic image without detailed knowledge of the complex illumination function incident on the sample, as demonstrated for freeze-dried cells of the eukaryotic amoeba Dictyostelium discoideum. The accessible resolution range is explored by simulations, indicating that resolutions on the order of 20 nm are within reach applying illumination times on the order of minutes at present synchrotron sources. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevA.83.023804 SN - 1050-2947 VL - 83 IS - 2 PB - American Physical Society CY - College Park ER -