TY - THES A1 - Itonaga, Naomi T1 - White storks (Ciconia ciconia) of Eastern Germany: age-dependent breeding ability, and age- and density-dependent effects on dispersal behavior T1 - Der Weißstorch (Ciconia ciconia) aus dem östlichen Deutschland: altersabhängiges Reproduktionsvermögen und alters- und bestandsdichteabhängiges Ausbreitungsverhalten N2 - Dispersal behavior plays an important role for the geographical distribution and population structure of any given species. Individual’s fitness, reproductive and competitive ability, and dispersal behavior can be determined by the age of the individual. Age-dependent as well as density-dependent dispersal patterns are common in many bird species. In this thesis, I first present age-dependent breeding ability and natal site fidelity in white storks (Ciconia ciconia); migratory birds breeding in large parts of Europe. I predicted that both the proportion of breeding birds and natal site fidelity increase with the age. After the seventies of the last century, following a steep population decline, a recovery of the white stork population has been observed in many regions in Europe. Increasing population density in the white stork population in Eastern Germany especially after 1983 allowed examining density- as well as age-dependent breeding dispersal patterns. Therefore second, I present whether: young birds show more often and longer breeding dispersal than old birds, and frequency of dispersal events increase with the population density increase, especially in the young storks. Third, I present age- and density-dependent dispersal direction preferences in the give population. I asked whether and how the major spring migration direction interacts with dispersal directions of white storks: in different age, and under different population densities. The proportion of breeding individuals increased in the first 22 years of life and then decreased suggesting, the senescent decay in aging storks. Young storks were more faithful to their natal sites than old storks probably due to their innate migratory direction and distance. Young storks dispersed more frequently than old storks in general, but not for longer distance. Proportion of dispersing individuals increased significantly with increasing population densities indicating, density- dependent dispersal behavior in white storks. Moreover, the finding of a significant interaction effects between the age of dispersing birds and year (1980–2006) suggesting, older birds dispersed more from their previous nest sites over time due to increased competition. Both young and old storks dispersed along their spring migration direction; however, directional preferences were different in young storks and old storks. Young storks tended to settle down before reaching their previous nest sites (leading to the south-eastward dispersal) while old birds tended to keep migrating along the migration direction after reaching their previous nest sites (leading to the north-westward dispersal). Cues triggering dispersal events may be age-dependent. Changes in the dispersal direction over time were observed. Dispersal direction became obscured during the second half of the observation period (1993–2006). Increase in competition may affect dispersal behavior in storks. I discuss the potential role of: age for the observed age-dependent dispersal behavior, and competition for the density dependent dispersal behavior. This Ph.D. thesis contributes significantly to the understanding of population structure and geographical distribution of white storks. Moreover, presented age- and density (competition)-dependent dispersal behavior helps understanding underpinning mechanisms of dispersal behavior in bird species. N2 - Das Verständnis der Mechanismen, die dem Ausbreitungsverhalten und der Wahl des Neststandorts zugrunde liegen, gibt wichtige Einsichten in Strukturen und Dynamiken von Tierpopulationen. Der Gesundheitszustand, die Produktivität und Konkurrenzfähigkeit sowie das Ausbreitungsverhalten eines Individuums können über das Alter ermittelt werden. Alters- und dichteabhängige Veränderungen in Verbreitungsmustern kommen bei vielen Vogelarten vor. In der vorliegenden Studie untersuchten wir zunächst den Effekt des Alters auf die Reproduktivität, auf die Wahl des Neststandorts sowie auf die Geburtsorttreue des Weißstorchs (Ciconia ciconia). Wir fragten, ob sowohl der Anteil der brütenden Individuen als auch die Geburtsorttreue mit dem Alter zunimmt. Weißstörche sind Zugvögel, die während der Migration zumeist segelnd die Thermik nutzen und in weiten Teilen Europas brüten. Nach einem starken Bestandsrückgang konnte in vielen Regionen Europas ab den 1970er Jahren wieder ein positiver Trend in der Populationsentwicklung beobachtet werden. Die zunehmende Populationsdichte, besonders nach 1983 in der ostziehenden Subpopulation in den fünf Bundesländern der ehemaligen DDR, erlaubte die Analyse von dichte- und altersabhängigen Präferenzen in der Richtung der Brutstandorte sowie in der Verbreitungsfrequenz und -distanz. Wir untersuchten zudem die Alters- und Dichteabhängigkeit der Ausbreitungsrichtung einer Teilpopulation. Wir fragten, ob und wie die Hauptzugrichtung im Frühjahr mit der Verbreitungsrichtung interagiert: Beeinflussen Alter und Populationsdichte die Ausbreitungsrichtung? Der Anteil der brütenden Individuen, die älter als 22 Jahre sind, nahm innerhalb der beobachteten Teilpopulation ab, vermutlich aufgrund einer altersbedingten Abnahme des Gesundheitszustands. Junge Vögel zeigten eine starke Geburtsorttreue, was auf eine genetische Komponente in den Zugmustern junger Störche hinweist. Generell trat bei jungen Störchen häufiger Ausbreitungsverhalten auf als bei älteren Störchen. Eine signifikante Zunahme der Ausbreitungsdistanz von Individuen über die Zeit lässt auf eine dichteabhängige Komponente im Ausbreitungsverhalten der Weißstörche schließen. Weiterhin wurde eine signifikante Interaktion zwischen dem Alter sich ausbreitender Individuen und dem betrachteten Jahr gefunden. Demzufolge breiteten sich alte Vögel über die Zeit über größere Distanzen aus, vermutlich um der ansteigenden Konkurrenz, bedingt durch den wachsenden Bestandsdruck, zu entgehen. KW - Weißstorch KW - Altersabhängigkeit KW - Dichteabhängigkeit KW - Ausbreitungsverhalten KW - Reproduktivität KW - White stork KW - age-dependent KW - density-dependent KW - dispersal behavior KW - breeding ability Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-39052 ER - TY - THES A1 - Apel, Wiebke T1 - Untersuchung und Veränderung der Genexpression und Proteinstabilität in Plastiden höherer Pflanzen Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Zhang, Gong T1 - Transient ribosomal attenuation as a generic mechanism to coordinate protein biosynthesis and biogenesis Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Najafabadi, Masood Soltani T1 - Transcription factor networks in the initial ohase of drouht stress in rice (Oryza sativa L.) Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Grimbs, Sergio T1 - Towards structure and dynamics of metabolic networks T1 - Struktur und Dynamik metabolischer Netzwerke N2 - This work presents mathematical and computational approaches to cover various aspects of metabolic network modelling, especially regarding the limited availability of detailed kinetic knowledge on reaction rates. It is shown that precise mathematical formulations of problems are needed i) to find appropriate and, if possible, efficient algorithms to solve them, and ii) to determine the quality of the found approximate solutions. Furthermore, some means are introduced to gain insights on dynamic properties of metabolic networks either directly from the network structure or by additionally incorporating steady-state information. Finally, an approach to identify key reactions in a metabolic networks is introduced, which helps to develop simple yet useful kinetic models. The rise of novel techniques renders genome sequencing increasingly fast and cheap. In the near future, this will allow to analyze biological networks not only for species but also for individuals. Hence, automatic reconstruction of metabolic networks provides itself as a means for evaluating this huge amount of experimental data. A mathematical formulation as an optimization problem is presented, taking into account existing knowledge and experimental data as well as the probabilistic predictions of various bioinformatical methods. The reconstructed networks are optimized for having large connected components of high accuracy, hence avoiding fragmentation into small isolated subnetworks. The usefulness of this formalism is exemplified on the reconstruction of the sucrose biosynthesis pathway in Chlamydomonas reinhardtii. The problem is shown to be computationally demanding and therefore necessitates efficient approximation algorithms. The problem of minimal nutrient requirements for genome-scale metabolic networks is analyzed. Given a metabolic network and a set of target metabolites, the inverse scope problem has as it objective determining a minimal set of metabolites that have to be provided in order to produce the target metabolites. These target metabolites might stem from experimental measurements and therefore are known to be produced by the metabolic network under study, or are given as the desired end-products of a biotechological application. The inverse scope problem is shown to be computationally hard to solve. However, I assume that the complexity strongly depends on the number of directed cycles within the metabolic network. This might guide the development of efficient approximation algorithms. Assuming mass-action kinetics, chemical reaction network theory (CRNT) allows for eliciting conclusions about multistability directly from the structure of metabolic networks. Although CRNT is based on mass-action kinetics originally, it is shown how to incorporate further reaction schemes by emulating molecular enzyme mechanisms. CRNT is used to compare several models of the Calvin cycle, which differ in size and level of abstraction. Definite results are obtained for small models, but the available set of theorems and algorithms provided by CRNT can not be applied to larger models due to the computational limitations of the currently available implementations of the provided algorithms. Given the stoichiometry of a metabolic network together with steady-state fluxes and concentrations, structural kinetic modelling allows to analyze the dynamic behavior of the metabolic network, even if the explicit rate equations are not known. In particular, this sampling approach is used to study the stabilizing effects of allosteric regulation in a model of human erythrocytes. Furthermore, the reactions of that model can be ranked according to their impact on stability of the steady state. The most important reactions in that respect are identified as hexokinase, phosphofructokinase and pyruvate kinase, which are known to be highly regulated and almost irreversible. Kinetic modelling approaches using standard rate equations are compared and evaluated against reference models for erythrocytes and hepatocytes. The results from this simplified kinetic models can simulate acceptably the temporal behavior for small changes around a given steady state, but fail to capture important characteristics for larger changes. The aforementioned approach to rank reactions according to their influence on stability is used to identify a small number of key reactions. These reactions are modelled in detail, including knowledge about allosteric regulation, while all other reactions were still described by simplified reaction rates. These so-called hybrid models can capture the characteristics of the reference models significantly better than the simplified models alone. The resulting hybrid models might serve as a good starting point for kinetic modelling of genome-scale metabolic networks, as they provide reasonable results in the absence of experimental data, regarding, for instance, allosteric regulations, for a vast majority of enzymatic reactions. N2 - In dieser Arbeit werden mathematische und informatische Ansätze zur Behandlung diverser Probleme im Zusammenhang mit der Modellierung metabolischer Netzwerke vorgestellt, insbesondere unter Berücksichtigung der eingeschränkten Verfügbarkeit detaillierter Enzymkinetiken. Es wird gezeigt, dass präzise mathematische Formulierungen der Probleme notwendig sind, um erstens angemessene und, falls möglich, effiziente Algorithmen zur Lösung zu entwickeln. Und zweitens, um die Güte der so gefundenen Lösungen zu bewerten. Des weiteren werden Methoden zur Analyse dynamischer Eigenschaften metabolischer Netzwerke eingeführt, welche entweder nur auf der Struktur der Netzwerke basieren oder zusätzlich noch Informationen über stationäre Zustände mit berücksichtigen. Außerdem wird eine Strategie zur Bestimmung von Schlüsselreaktionen eines Netzwerkes vorgestellt, welche die Entwicklung kinetischer Modelle vereinfacht. Der Erfolg neuer Technologien ermöglicht eine immer billigere und schnellere Sequenzierung des Genoms. Dies wird in naher Zukunft die Analyse biologischer Netzwerke nicht nur für Spezies, sondern auch für einzelne Individuen ermöglichen. Die automatische Rekonstruktion metabolischer Netzwerke ist bestens dafür geeignet, diese großen Datenmengen auszuwerten. Eine mathematische Formulierung der Rekonstruktion als Optimierungsproblem wird vorgestellt, die sowohl bereits vorhandenes Wissen als auch theoretische Vorhersagen verschiedenster bioinformatischer Methoden berücksichtigt. Die rekonstruierten Netzwerke sind hinsichtlich möglichst großer und plausibler Zusammenhangskomponenten hin optimiert, um fragmentierte und isolierte Teilnetzwerke zu vermeiden. Als Beispiel dient die Rekonstruktion der Saccharosesynthese in Chlamydomonas reinhardtii. Es wird gezeigt, dass das Problem sehr rechenintensiv ist und somit Approximationsalgorithmen erforderlich macht. Das 'inverse scope' Problem hat als Optimierungsziel, für ein gegebenes metabolisches Netzwerk die minimale Menge notwendiger Metabolite zu bestimmen, um eine ebenfalls gegebene Menge von gewünschten Zielmetaboliten zu produzieren. Diese Zielmetabolite können entweder durch experimentellen Messungen festgelegt werden, oder sie sind die gewünschten Endprodukte einer biotechnologischen Anwendung. Es wird gezeigt, dass das 'inverse scope' Problem rechenintensiv ist. Allerdings wird angenommen, dass die Berechnungskomplexität stark von der Anzahl gerichteter Zyklen innerhalb des metabolischen Netzwerkes abhängt. Dies könnte die Entwicklung effizienter Approximationsalgorithmen ermöglichen. Unter der Annahme von Massenwirkungskinetiken erlaubt es die 'chemical reaction network theory' (CRNT), anhand der Struktur metabolischer Netzwerke Rückschlüsse auf Multistabilität zu ziehen. Auch weitere Kinetiken können durch Modellierung von Enzymmechanismen mit berücksichtigt werden. CRNT wird zum Vergleich von mehreren Modellen des Calvinzyklus, welche sich in Größe und Abstraktionsniveau unterscheiden, verwendet. Obwohl für kleinere Modelle Ergebnisse erzielt werden, erlauben es die verfügbaren Theoreme und Algorithmen der CRNT nicht, Aussagen für größere Modelle zu machen, da die gegenwärtigen Implementierungen der Algorithmen an ihre Berechnungsgrenzen stoßen. Sind sowohl die Stoichiometrie eines metabolischen Netzwerkes, als auch die Metabolitkonzentrationen und Flüsse im stationären Zustand bekannt, so kann 'structural kinetic modelling' angewandt werden, um das dynamische Verhalten des Netzwerkes zu analysieren, selbst wenn die expliziten Ratengleichung unbekannt sind. Dieser Ansatz wird verwendet, um den stabilisierenden Einfluss allosterischer Regulation in menschlichen Erythrozyten zu untersuchen. Des weiteren werden die Reaktionen anhand ihrer Bedeutung hinsichtlich Stabilität im stationären Zustand angeordnet. Die wichtigsten Reaktionen bezüglich dieser Ordnung sind Hexokinase, Phosphofructokinase und Pyruvatkinase, welche bekanntermaßen stark reguliert und irreversibel sind. Kinetische Modelle, die auf generischen Ratengleichung beruhen, werden mit detaillierten Referenzmodellen für Erythrozyten und Hepatozyten verglichen. Die generischen Modelle simulieren das Verhalten nur in der Nähe eines gegebenen stationären Zustandes recht gut. Der zuvor erwähnte Ansatz, wichtige Reaktionen bezüglich Stabilität zu identifizieren, wird zur Bestimmung von Schlüsselreaktionen genutzt. Diese Schlüsselreaktionen werden im Detail modelliert, während für alle anderen Reaktionen weiterhin generische Ratengleichung verwendet werden. Die so entstandenen Hybridmodelle können das Verhalten des Referenzmodells signifikant besser beschreiben. Die Hybridmodelle können als Ausgangspunkt zur Erstellung genomweiter kinetischer Modelle dienen. KW - metabolische Netzwerke KW - Modellierung KW - Struktur KW - Dynamik KW - Bioinformatik KW - metabolic networks KW - modelling KW - structure KW - dynamics KW - bioinformatics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-32397 ER - TY - THES A1 - Cruz Centeno, Danilo da T1 - The role of malate in the development of tomato fruit Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Tschoep, Hendrik T1 - The response of growth and primary metabolism to a mild but sustained nitrogen limitation in arabidopsis thaliana Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Roohi, Farnoosh T1 - Synthesis and evaluation of thermo-responsive stationary phases for high performance liquid chromatography (HPLC) Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Yadav, Umesh Prasad T1 - Sucrose and trehalose-6-phosphate signalling in "Arabidopsis thaliana" Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Hiller, Matthias T1 - Sample preparation of membrane proteins suitable for solid-state MAS NMR and development of assignment strategies T1 - Präparation von Membranproteinen für Strukturuntersuchungen mittels Festkörper MAS NMR und die Entwicklung von Zuordnungsstrategien N2 - Although the basic structure of biological membranes is provided by the lipid bilayer, most of the specific functions are carried out by membrane proteins (MPs) such as channels, ion-pumps and receptors. Additionally, it is known, that mutations in MPs are directly or indirectly involved in many diseases. Thus, structure determination of MPs is of major interest not only in structural biology but also in pharmacology, especially for drug development. Advances in structural biology of membrane proteins (MPs) have been strongly supported by the success of three leading techniques: X-ray crystallography, electron microscopy and solution NMR spectroscopy. However, X-ray crystallography and electron microscopy, require highly diffracting 3D or 2D crystals, respectively. Today, structure determination of non-crystalline solid protein preparations has been made possible through rapid progress of solid-state MAS NMR methodology for biological systems. Castellani et. al. solved and refined the first structure of a microcrystalline protein using only solid-state MAS NMR spectroscopy. These successful application open up perspectives to access systems that are difficult to crystallise or that form large heterogeneous complexes and insoluble aggregates, for example ligands bound to a MP-receptor, protein fibrils and heterogeneous proteins aggregates. Solid-state MAS NMR spectroscopy is in principle well suited to study MP at atomic resolution. In this thesis, different types of MP preparations were tested for their suitability to be studied by solid-state MAS NMR. Proteoliposomes, poorly diffracting 2D crystals and a PEG precipitate of the outer membrane protein G (OmpG) were prepared as a model system for large MPs. Results from this work, combined with data found in the literature, show that highly diffracting crystalline material is not a prerequirement for structural analysis of MPs by solid-state MAS NMR. Instead, it is possible to use non-diffracting 3D crystals, MP precipitates, poorly diffracting 2D crystals and proteoliposomes. For the latter two types of preparations, the MP is reconstituted into a lipid bilayer, which thus allows the structural investigation in a quasi-native environment. In addition, to prepare a MP sample for solid-state MAS NMR it is possible to use screening methods, that are well established for 3D and 2D crystallisation of MPs. Hopefully, these findings will open a fourth method for structural investigation of MP. The prerequisite for structural studies by NMR in general, and the most time consuming step, is always the assignment of resonances to specific nuclei within the protein. Since the last few years an ever-increasing number of assignments from solid-state MAS NMR of uniformly carbon and nitrogen labelled samples is being reported, mostly for small proteins of up to around 150 amino acids in length. However, the complexity of the spectra increases with increasing molecular weight of the protein. Thus the conventional assignment strategies developed for small proteins do not yield a sufficiently high degree of assignment for the large MP OmpG (281 amino acids). Therefore, a new assignment strategy to find starting points for large MPs was devised. The assignment procedure is based on a sample with [2,3-13C, 15N]-labelled Tyr and Phe and uniformly labelled alanine and glycine. This labelling pattern reduces the spectral overlap as well as the number of assignment possibilities. In order to extend the assignment, four other specifically labelled OmpG samples were used. The assignment procedure starts with the identification of the spin systems of each labelled amino acid using 2D 13C-13C and 3D NCACX correlation experiments. In a second step, 2D and 3D NCOCX type experiments are used for the sequential assignment of the observed resonances to specific nuclei in the OmpG amino acid sequence. Additionally, it was shown in this work, that biosynthetically site directed labelled samples, which are normally used to observe long-range correlations, were helpful to confirm the assignment. Another approach to find assignment starting points in large protein systems, is the use of spectroscopic filtering techniques. A filtering block that selects methyl resonances was used to find further assignment starting points for OmpG. Combining all these techniques, it was possible to assign nearly 50 % of the observed signals to the OmpG sequence. Using this information, a prediction of the secondary structure elements of OmpG was possible. Most of the calculated motifs were in good aggreement with the crystal structures of OmpG. The approaches presented here should be applicable to a wide variety of MPs and MP-complexes and should thus open a new avenue for the structural biology of MPs. N2 - Biologische Membranen bestehen hauptsächlich aus Lipiden, ihre Funktion wird jedoch vor allem durch die eingebetteten Membranproteine (z.B. Kanäle, Ionenpumpen und Rezeptoren) bestimmt. Mutationen in dieser Proteinklasse können zum Auftreten verschiedener Krankheitsbilder führen, weshalb die Untersuchung der dreidimensionalen Struktur von Membranproteinen nicht nur von strukturbiologischem, sondern auch von pharmakologischem Interesse ist. In den letzten Jahren wurde eine Methode, die Festkörper NMR Spektroskopie, für Strukturuntersuchungen an Proteinproben im festen Aggregatzustand entwickelt. Diese Arbeit beschäftigt sich mit drei verschiedenen Präparationsarten von Membranproteinen, die eine Aufnahme von hochaufgelösten Festkörper NMR Spektren erlauben. Als Modelsystem wurde das Protein G der äußeren Membrane (outer membrane protein G, OmpG) von Escherichia coli gewählt. Eine wichtige Vorraussetzung zur Berechnung der Proteinstruktur aus den NMR-Spektren, ist die Zuordnung der einzelnen Signale zur jeweiligen Aminosäure in der Proteinsequenz. In dieser Arbeit wurde eine Methode entwickelt, die das Auffinden von Startpunkten für die sequentielle Zuordnung in großen Membranproteinen, wie zum Bsp. OmpG (281 Aminosäuren), erlaubt. Multidimensionale NMR Experimente mit verschieden spezifisch markierten Proben wurden durchgeführt und ermöglichten die Zuordnung von 50 % der NMR Signale der OmpG Proteinsequenz. Zur Überprüfung der gewonnenen Daten wurden diese zur Vorhersage von Sekundärstrukturelementen genutzt. Es konnte gezeigt werden, dass die berechneten Strukturmotive in guter Übereinstimmung zu den bisher veröffentlichten OmpG Strukturen liegen. Die in dieser Arbeit angewendeten Methoden sollten auf eine Vielzahl anderer Membranprotein anwendbar und somit einen neuen Weg zur Strukturbiologischen Untersuchung von Membranproteinen eröffnen. KW - Membranproteine KW - Festkörper NMR Spektroskopie KW - Proteinstruktur KW - OmpG KW - Membrane protein KW - solid-state MAS NMR KW - protein structure KW - OmpG Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-37246 ER -