TY - JOUR A1 - Sperfeld, Erik A1 - Wacker, Alexander T1 - Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs JF - Freshwater biology N2 - 1. Poikilothermic animals incorporate more polyunsaturated fatty acids (PUFAs) into their cellular membranes as temperature declines, suggesting an increased sensitivity to PUFA limitation in cool conditions. To test this we raised Daphnia magna at different temperatures and investigated the effect of varying dietary PUFA on life history parameters (i.e. growth, reproduction) and the PUFA composition of body tissue and eggs. 2. Upon a PUFA-rich diet (Cryptomonas sp.) females showed higher concentrations of several omega 3 PUFAs in their body tissue at 15 degrees C than at 20 degrees C and 25 degrees C, indicating a greater structural requirement for omega 3 PUFAs at low temperature. Their eggs had an equal but higher concentration of omega 3 PUFAs than their body tissue. 3. In a life history experiment at 15 and 20 degrees C we supplemented a diet of a PUFA-free cyanobacterium with the omega 3 PUFA eicosapentaenoic acid (EPA). The growth of D. magna was more strongly EPA limited at low temperature. A greater requirement for structural EPA at 15 degrees C was indicated by a steeper increase in somatic EPA content with dietary EPA compared to 20 degrees C. 4. At 20 degrees C the development of eggs to successful hatching was high when EPA was supplied to the mothers. At 15 degrees C the hatching success was generally poor, despite of a higher maternal provision of EPA to eggs, compared to that at 20 degrees C, suggesting that EPA alone was insufficient for proper neonatal development at the low temperature. The growth of offspring from mothers raised at 20 degrees C without EPA supplementation was very low, indicating that the negative effects of EPA deficiency can be carried on to the next generation. 5. The fatty acid composition of Daphnia sp. in published field studies shows increasing proportions of saturated fatty acids with increasing environmental temperature, whereas omega 3 PUFAs and EPA show no clear pattern, suggesting that variations in dietary PUFA may mask temperature-dependent adjustments in omega 3 PUFA concentrations of cladocerans in nature. KW - food quality KW - maternal effects KW - polyunsaturated fatty acids KW - resource allocation KW - zooplankton Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2427.2011.02719.x SN - 0046-5070 VL - 57 IS - 3 SP - 497 EP - 508 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lukas, Marcus A1 - Frost, Paul C. A1 - Wacker, Alexander T1 - The neonate nutrition hypothesis - early feeding affects the body stoichiometry of Daphnia offspring JF - Freshwater biology N2 - Aquatic herbivores consume variable quantities and qualities of food. In freshwater systems, where phosphorus (P) is often a primary limiting element, inadequate dietary P can slow maternal growth and reduce body P content. There remains uncertainty about whether and how dietary effects on mothers are transferred to offspring by way of egg provisioning. Using the keystone herbivore Daphnia, we tested a novel explanation (the neonate nutrition hypothesis') to determine whether the early nutrition of newborns affects their elemental composition and whether the indications of differences in maternal P nutrition found previously might be overestimated. We thus examined the P content of mothers and their eggs from deposition through development to the birth of neonates. We examined further whether very short periods of ingestion (3h) by the offspring alter the overall P content of juvenile Daphnia. We showed that strong dietary P effects on mothers were not directly transferred to their eggs. Irrespective of the supply of P in the maternal diet, the P content of eggs in different developmental stages and in (unfed) neonates did not differ. This indicates that Daphnia mothers do not reduce the quality (in terms of P) of newly produced offspring after intermittent periods (i.e. several days) of poor nutrition. In contrast, the P content of neonates reflected that of their food after brief periods of feeding, indicating that even temporary exposure to nutrient poor food immediately after birth may strongly affect the elemental composition of neonates. Our results thus support the neonate nutrition hypothesis, which, like differential maternal provisioning, is a possible explanation for the variable elemental quality of young Daphnia. KW - ecological stoichiometry KW - food quality KW - maternal effects KW - nutrient limitation KW - zooplankton Y1 - 2013 U6 - https://doi.org/10.1111/fwb.12213 SN - 0046-5070 VL - 58 IS - 11 SP - 2333 EP - 2344 PB - Wiley-Blackwell CY - Hoboken ER -