TY - JOUR A1 - Avrami, Lydia A1 - Sprinz, Detlef F. T1 - Measuring and explaining the EU’s effect on national climate performance JF - Environmental Politics N2 - To what extent has the European Union (EU) had a benign or retarding effect on what its member states would have undertaken in the absence of EU climate policies during 2008–2012? A measurement tool for the EU policy’s effect is developed and shows a benign average EU effect with considerable variation across countries. The EU’s policy effectiveness vis-à-vis its member states is explained by the EU’s non-compliance mechanism, the degree of usage of the Kyoto flexible mechanisms, and national pre-Kyoto emission reduction goals. Time-series cross-sectional analyses show that the EU’s non-compliance mechanism has no effect, while the ex-ante plans for using Kyoto flexible mechanisms and/or the ambitious pre-Kyoto emission reduction targets allow member states to escape constraints imposed by EU climate policy. KW - Climate change KW - policy effectiveness KW - EU KW - kyoto protocol KW - non-compliance KW - Kyoto (flexible) mechanisms Y1 - 2018 U6 - https://doi.org/10.1080/09644016.2018.1494945 SN - 0964-4016 SN - 1743-8934 VL - 28 IS - 5 SP - 822 EP - 846 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Ayllon, Daniel A1 - Railsback, Steven Floyd A1 - Vincenzi, Simone A1 - Groeneveld, Juergen A1 - Almodoevar, Ana A1 - Grimm, Volker T1 - InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Current rates of environmental change are exceeding the capacity of many populations to adapt to new conditions and thus avoid demographic collapse and ultimate extinction. In particular, cold-water freshwater fish species are predicted to experience strong selective pressure from climate change and a wide range of interacting anthropogenic stressors in the near future. To implement effective management and conservation measures, it is crucial to quantify the maximum rate of change that cold-water freshwater fish populations can withstand. Here, we present a spatially explicit eco-genetic individual-based model, inSTREAM-Gen, to predict the eco-evolutionary dynamics of stream-dwelling trout under anthropogenic environmental change. The model builds on a well-tested demographic model, which includes submodels of river dynamics, bioenergetics, and adaptive habitat selection, with a new genetic module that allows exploration of genetic and life-history adaptations to new environments. The genetic module models the transmission of two key traits, size at emergence and maturity size threshold. We parameterized the model for a brown trout (Salmo trutta L.) population at the warmest edge of its range to validate it and analyze its sensitivity to parameters under contrasting thermal profiles. To illustrate potential applications of the model, we analyzed the population's demographic and evolutionary dynamics under scenarios of (1) climate change-induced warming, and (2) warming plus flow reduction resulting from climate and land use change, compared to (3) a baseline of no environmental change. The model predicted severe declines in density and biomass under climate warming. These declines were lower than expected at range margins because of evolution towards smaller size at both emergence and maturation compared to the natural evolution under the baseline conditions. Despite stronger evolutionary responses, declining rates were substantially larger under the combined warming and flow reduction scenario, leading to a high probability of population extinction over contemporary time frames. Therefore, adaptive responses could not prevent extinction under high rates of environmental change. Our model demonstrates critical elements of next generation ecological modelling aiming at predictions in a changing world as it accounts for spatial and temporal resource heterogeneity, while merging individual behaviour and bioenergetics with microevolutionary adaptations. KW - Individual-based model KW - Eco-genetic modelling KW - Eco-evolution KW - Climate change KW - Brown trout KW - Next-generation modelling Y1 - 2016 U6 - https://doi.org/10.1016/j.ecolmodel.2015.07.026 SN - 0304-3800 SN - 1872-7026 VL - 326 SP - 36 EP - 53 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bansard, Jennifer S. A1 - Pattberg, Philipp H. A1 - Widerberg, Oscar T1 - Cities to the rescue? Assessing the performance of transnational municipal networks in global climate governance JF - International environmental agreements: politics, law and economics N2 - Despite the proliferation and promise of subnational climate initiatives, the institutional architecture of transnational municipal networks (TMNs) is not well understood. With a view to close this research gap, the article empirically assesses the assumption that TMNs are a viable substitute for ambitious international action under the United Nations Framework Convention on Climate Change (UNFCCC). It addresses the aggregate phenomenon in terms of geographical distribution, central players, mitigation ambition and monitoring provisions. Examining thirteen networks, it finds that membership in TMNs is skewed toward Europe and North America while countries from the Global South are underrepresented; that only a minority of networks commit to quantified emission reductions and that these are not more ambitious than Parties to the UNFCCC; and finally that the monitoring provisions are fairly limited. In sum, the article shows that transnational municipal networks are not (yet) the representative, ambitious and transparent player they are thought to be. KW - Climate change KW - Cities and regions KW - Urban politics KW - Transnational networks Y1 - 2017 U6 - https://doi.org/10.1007/s10784-016-9318-9 SN - 1567-9764 SN - 1573-1553 VL - 17 SP - 229 EP - 246 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Barthold, Frauke Katrin A1 - Wiesmeier, Martin A1 - Breuer, L. A1 - Frede, Hans-Georg A1 - Wu, J. A1 - Blank, F. Benjamin T1 - Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia JF - Journal of arid environments N2 - The spatial distribution of soil types is controlled by a set of environmental factors such as climate, organisms, parent material and topography as well as time and space. A change of these factors will lead to a change in the spatial distribution of soil types. In this study, we use a digital soil mapping approach to improve our knowledge about major soil type distributing factors in the steppe regions of Inner Mongolia (China) which currently undergo tremendous environmental change, e.g. climate and land use change. We use Random Forests in an effort to map Reference Soil Groups according to the World Reference Base for Soil Resources (WRB) in the Xilin River catchment. We benefit from the superior prediction capabilities of RF and additional interpretive results in order to identify the major environmental factors that control spatial patterns of soil types. The nine WRB soil groups that were identified and spatially predicted for the study area are Arenosol, Calcisol, Cambisol, Chernozem, Cryosol, Gleysol, Kastanozem, Phaeozem and Regosol. Model and prediction performances of the RF model are high with an Out-of-Bag error of 51.6% for the model and a misclassification error for the predicted map of 28.9%. The main controlling factors of soil type distribution are land use, a set of topographic variables, geology and climate. However, land use and climate are of major importance and topography and geology are of minor importance. The visualizations of the predictions, the variable importance measures as result of RF and the comparisons of these with the spatial distribution of the environmental factors delivered additional, quantitative information of these controlling factors and revealed that intensively grazed areas are subjected to soil degradation. However, most of the area is still governed by natural soil forming processes which are driven by climate, topography and geology. Most importantly though, our study revealed that a shift towards warmer temperatures and lower precipitation regimes will lead to a change of the spatial distribution of RSGs towards steppe soils that store less carbon, i.e. a decrease of spatial extent of Phaeozems and an increase of spatial extent of Chernozems and Kastanozems. KW - Random Forests KW - Soil-environmental relationships KW - Steppe KW - Inner Mongolia KW - Land use change KW - Climate change Y1 - 2013 U6 - https://doi.org/10.1016/j.jaridenv.2012.08.004 SN - 0140-1963 VL - 88 IS - 1 SP - 194 EP - 205 PB - Elsevier CY - London ER - TY - JOUR A1 - Bell, M. J. A1 - Jones, E. A1 - Smith, J. A1 - Smith, P. A1 - Yeluripati, J. A1 - Augustin, Jürgen A1 - Juszczak, R. A1 - Olejnik, J. A1 - Sommer, Michael T1 - Simulation of soil nitrogen, nitrous oxide emissions and mitigation scenarios at 3 European cropland sites using the ECOSSE model JF - Nutrient cycling in agroecosystems N2 - The global warming potential of nitrous oxide (N2O) and its long atmospheric lifetime mean its presence in the atmosphere is of major concern, and that methods are required to measure and reduce emissions. Large spatial and temporal variations means, however, that simple extrapolation of measured data is inappropriate, and that other methods of quantification are required. Although process-based models have been developed to simulate these emissions, they often require a large amount of input data that is not available at a regional scale, making regional and global emission estimates difficult to achieve. The spatial extent of organic soils means that quantification of emissions from these soil types is also required, but will not be achievable using a process-based model that has not been developed to simulate soil water contents above field capacity or organic soils. The ECOSSE model was developed to overcome these limitations, and with a requirement for only input data that is readily available at a regional scale, it can be used to quantify regional emissions and directly inform land-use change decisions. ECOSSE includes the major processes of nitrogen (N) turnover, with material being exchanged between pools of SOM at rates modified by temperature, soil moisture, soil pH and crop cover. Evaluation of its performance at site-scale is presented to demonstrate its ability to adequately simulate soil N contents and N2O emissions from cropland soils in Europe. Mitigation scenarios and sensitivity analyses are also presented to demonstrate how ECOSSE can be used to estimate the impact of future climate and land-use change on N2O emissions. KW - Soil N2O emissions KW - Process-based models KW - Land-use KW - Climate change Y1 - 2012 U6 - https://doi.org/10.1007/s10705-011-9479-4 SN - 1385-1314 VL - 92 IS - 2 SP - 161 EP - 181 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Bergholz, Kolja A1 - May, Felix A1 - Ristow, Michael A1 - Giladi, Itamar A1 - Ziv, Yaron A1 - Jeltsch, Florian T1 - Two Mediterranean annuals feature high within-population trait variability and respond differently to a precipitation gradient JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Intraspecific trait variability plays an important role in species adaptation to climate change. However, it still remains unclear how plants in semi-arid environments respond to increasing aridity. We investigated the intraspecific trait variability of two common Mediterranean annuals (Geropogon hybridus and Crupina crupinastrum) with similar habitat preferences. They were studied along a steep precipitation gradient in Israel similar to the maximum predicted precipitation changes in the eastern Mediterranean basin (i.e. -30% until 2100). We expected a shift from competitive ability to stress tolerance with decreasing precipitation and tested this expectation by measuring key functional traits (canopy and seed release height, specific leaf area, N-and P-leaf content, seed mass). Further, we evaluated generative bet-hedging strategies by different seed traits. Both species showed different responses along the precipitation gradient. C. crupinastrum exhibited only decreased plant height toward saridity, while G. hybridus showed strong trends of generative adaptation to aridity. Different seed trait indices suggest increased bet-hedging of G. hybridus in arid environments. However, no clear trends along the precipitation gradient were observed in leaf traits (specific leaf area and leaf N-/P-content) in both species. Moreover, variance decomposition revealed that most of the observed trait variation (>> 50%) is found within populations. The findings of our study suggest that responses to increased aridity are highly species-specific and local environmental factors may have a stronger effect on intraspecific trait variation than shifts in annual precipitation. We therefore argue that trait-based analyses should focus on precipitation gradients that are comparable to predicted precipitation changes and compare precipitation effects to effects of local environmental factors. (C) 2017 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved. KW - Climate change KW - Functional ecology KW - Plant height KW - Drought stress KW - Rainfall gradient KW - Trait-environment relationship KW - Local adaptation KW - Phenotypic plasticity Y1 - 2017 U6 - https://doi.org/10.1016/j.baae.2017.11.001 SN - 1439-1791 SN - 1618-0089 VL - 25 SP - 48 EP - 58 PB - Elsevier CY - Jena ER - TY - CHAP A1 - Bronstert, Axel A1 - Crisologo, Irene A1 - Heistermann, Maik A1 - Öztürk, Ugur A1 - Vogel, Kristin A1 - Wendi, Dadiyorto T1 - Flash-floods: more often, more severe, more damaging? BT - An analysis of hydro-geo-environmental conditions and anthropogenic impacts T2 - Climate change, hazards and adaptation options: handling the impacts of a changing climate N2 - In recent years, urban and rural flash floods in Europe and abroad have gained considerable attention because of their sudden occurrence, severe material damages and even danger to life of inhabitants. This contribution addresses questions about possibly changing environmental conditions which might have altered the occurrence frequencies of such events and their consequences. We analyze the following major fields of environmental changes. Altered high intensity rain storm conditions, as a consequence of regionalwarming; Possibly altered runoff generation conditions in response to high intensity rainfall events; Possibly altered runoff concentration conditions in response to the usage and management of the landscape, such as agricultural, forest practices or rural roads; Effects of engineering measures in the catchment, such as retention basins, check dams, culverts, or river and geomorphological engineering measures. We take the flash-flood in Braunsbach, SW-Germany, as an example, where a particularly concise flash flood event occurred at the end of May 2016. This extreme cascading natural event led to immense damage in this particular village. The event is retrospectively analyzed with regard to meteorology, hydrology, geomorphology and damage to obtain a quantitative assessment of the processes and their development. The results show that it was a very rare rainfall event with extreme intensities, which in combination with catchment properties and altered environmental conditions led to extreme runoff, extreme debris flow and immense damages. Due to the complex and interacting processes, no single flood cause can be identified, since only the interplay of those led to such an event. We have shown that environmental changes are important, but-at least for this case study-even natural weather and hydrologic conditions would still have resulted in an extreme flash flood event. KW - Flash flood KW - Climate change KW - Extreme rainfall KW - Anthropogenic impacts Y1 - 2020 SN - 978-3-030-37425-9 SN - 978-3-030-37424-2 U6 - https://doi.org/10.1007/978-3-030-37425-9_12 SN - 1610-2010 SP - 225 EP - 244 PB - Springer CY - Cham ER - TY - JOUR A1 - Bubeck, Philip A1 - Thieken, Annegret T1 - What helps people recover from floods? BT - insights from a survey among flood-affected residents in German JF - Regional environmental change N2 - The number of people exposed to natural hazards has grown steadily over recent decades, mainly due to increasing exposure in hazard-prone areas. In the future, climate change could further enhance this trend. Still, empirical and comprehensive insights into individual recovery from natural hazards are largely lacking, hampering efforts to increase societal resilience. Drawing from a sample of 710 residents affected by flooding across Germany in June 2013, we empirically explore a wide range of variables possibly influencing self-reported recovery, including flood-event characteristics, the circumstances of the recovery process, socio-economic characteristics, and psychological factors, using multivariate statistics. We found that the amount of damage and other flood-event characteristics such as inundation depth are less important than socio-economic characteristics (e.g., sex or health status) and psychological factors (e.g., risk aversion and emotions). Our results indicate that uniform recovery efforts focusing on areas that were the most affected in terms of physical damage are insufficient to account for the heterogeneity in individual recovery results. To increase societal resilience, aid and recovery efforts should better address the long-term psychological effects of floods. KW - Floods KW - Resilience KW - Recovery KW - Natural hazards KW - Climate change KW - Adaptation Y1 - 2017 U6 - https://doi.org/10.1007/s10113-017-1200-y SN - 1436-3798 SN - 1436-378X VL - 18 IS - 1 SP - 287 EP - 296 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Buter, Anuschka A1 - Heckmann, Tobias A1 - Filisetti, Lorenzo A1 - Savi, Sara A1 - Mao, Luca A1 - Gems, Bernhard A1 - Comiti, Francesco T1 - Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments JF - Geomorphology : an international journal on pure and applied geomorphology N2 - In the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave and rainstorm conditions with snowmelt and glacier-melt periods. For each scenario and each sub-basin, the sediment transport network and related catchment characteristics were analysed. To compare the effects of the scenarios on functional connectivity, we introduced a connectivity degree, calculated based on the area of the landforms involved in sediment cascades. Results indicate that the area of the basin connected to its outlet in terms of sediment transport might feature a six-fold increase in case of rainstorm conditions compared to "average " meteorological conditions assumed for the base scenario. Furthermore, markedly different effects of climate change on sediment connectivity are expected between the two sub-catchments due to their contrasting morphological and lithological characteristics, in terms of relative importance of rainfall triggered colluvial processes vs temperature-driven proglacial fluvial dynamics. KW - Functional connectivity KW - Graph theory KW - Climate change KW - Geomorphic systems Y1 - 2022 U6 - https://doi.org/10.1016/j.geomorph.2022.108128 SN - 0169-555X SN - 1872-695X VL - 402 PB - Elsevier CY - Amsterdam ER - TY - INPR A1 - Bürger, Gerd T1 - Comment on "Bias correction, quantile mapping, and downscaling: revisiting the inflation issue" T2 - Journal of climate N2 - In a recent paper, Maraun describes the adverse effects of quantile mapping on downscaling. He argues that when large-scale GCM variables are rescaled directly to small-scale fields or even station data, genuine small-scale covariability is lost and replaced by uniform variability inherited from the larger scales. This leads to a misrepresentation mainly of areal means and long-term trends. This comment acknowledges the former point, although the argument is relatively old, but disagrees with the latter, showing that grid-size long-term trends can be different from local trends. Finally, because it is partly incorrectly addressed, some clarification is added regarding the inflation issue, stressing that neither randomization nor inflation is free of unverified assumptions. KW - Climate change KW - Statistics KW - Climate variability Y1 - 2014 U6 - https://doi.org/10.1175/JCLI-D-13-00184.1 SN - 0894-8755 SN - 1520-0442 VL - 27 IS - 4 SP - 1819 EP - 1820 PB - American Meteorological Soc. CY - Boston ER -