TY - JOUR A1 - Balling, Philipp A1 - Maystrenko, Yuriy A1 - Scheck-Wenderoth, Magdalena T1 - The deep thermal field of the Glückstadt Graben JF - Environmental earth sciences N2 - With this paper, we assess the present-day conductive thermal field of the Glueckstadt Graben in NW Germany that is characterized by large salt walls and diapirs structuring the graben fill. We use a finite element method to calculate the 3D steady-state conductive thermal field based on a lithosphere-scale 3D structural model that resolves the first-order structural characteristics of the graben and its underlying lithosphere. Model predictions are validated against measured temperatures in six deep wells. Our investigations show that the interaction of thickness distributions and thermal rock properties of the different geological layers is of major importance for the distribution of temperatures in the deep subsurface of the Glueckstadt Graben. However, the local temperatures may result from the superposed effects of different controlling factors. Especially, the upper sedimentary part of the model exhibits huge lateral temperature variations, which correlate spatially with the shape of the thermally highly conductive Permian salt layer. Variations in thickness and geometry of the salt cause two major effects, which provoke considerable lateral temperature variations for a given depth. (1) The "chimney effect" causes more efficient heat transport within salt diapirs. As a consequence positive thermal anomalies develop in the upper part and above salt structures, where the latter are covered by much less conductive sediments. In contrast, negative thermal anomalies are noticeable underneath salt structures. (2) The "thermal blanketing effect" is caused by thermally low conductive sediments that provoke the local storage of heat where these insulating sediments are present. The latter effect leads to both local and regional thermal anomalies. Locally, this translates to higher temperatures where salt margin synclines are filled with thick insulating clastic sediments. For the regional anomalies the cumulative insulating effects of the entire sediment fill results in a long-wavelength variation of temperatures in response to heat refraction effects caused by the contrast between insulating sediments and highly conductive crystalline crust. Finally, the longest wavelength of temperature variations is caused by the depth position of the isothermal lithosphere-asthenosphere boundary defining the regional variations of the overall geothermal gradient. We find that a conductive thermal model predicts observed temperatures reasonably well for five of the six available wells, whereas the steady-state conductive approach appears not to be valid for the sixth well. KW - Conductive thermal field KW - 3D thermal modelling KW - Zechstein salt KW - Lithosphereasthenosphere boundary KW - Schleswig-Holstein KW - Glueckstadtgraben Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2750-z SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3505 EP - 3522 PB - Springer CY - New York ER - TY - JOUR A1 - Cacace, Mauro A1 - Blöcher, Guido A1 - Watanabe, Norihiro A1 - Möck, Inga A1 - Börsing, Nele A1 - Scheck-Wenderoth, Magdalena A1 - Kolditz, Olaf A1 - Hünges, Ernst T1 - Modelling of fractured carbonate reservoirs - outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany JF - Environmental earth sciences N2 - Fluid flow in low-permeable carbonate rocks depends on the density of fractures, their interconnectivity and on the formation of fault damage zones. The present-day stress field influences the aperture hence the transmissivity of fractures whereas paleostress fields are responsible for the formation of faults and fractures. In low-permeable reservoir rocks, fault zones belong to the major targets. Before drilling, an estimate for reservoir productivity of wells drilled into the damage zone of faults is therefore required. Due to limitations in available data, a characterization of such reservoirs usually relies on the use of numerical techniques. The requirements of these mathematical models encompass a full integration of the actual fault geometry, comprising the dimension of the fault damage zone and of the fault core, and the individual population with properties of fault zones in the hanging and foot wall and the host rock. The paper presents both the technical approach to develop such a model and the property definition of heterogeneous fault zones and host rock with respect to the current stress field. The case study describes a deep geothermal reservoir in the western central Molasse Basin in southern Bavaria, Germany. Results from numerical simulations indicate that the well productivity can be enhanced along compressional fault zones if the interconnectivity of fractures is lateral caused by crossing synthetic and antithetic fractures. The model allows a deeper understanding of production tests and reservoir properties of faulted rocks. KW - Fractured carbonate geothermal reservoirs KW - Fault core and damage zone KW - In situ stress field KW - 3D mesh generator KW - OpenGeosys KW - Well productivity Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2402-3 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3585 EP - 3602 PB - Springer CY - New York ER - TY - JOUR A1 - Cacace, Mauro A1 - Kaiser, Bjoern Onno A1 - Lewerenz, Bjoern A1 - Scheck-Wenderoth, Magdalena T1 - Geothermal energy in sedimentary basins : what we can learn from regional numerical models N2 - Understanding the interactions between the different processes that control the geothermal and fluid flow fields in sedimentary basins is crucial for exploitation of geothermal energy. Numerical models provide predictive and feasible information for a correct assessment of geothermal resources especially in areas where data acquisition is demanding. Here, we present results from numerical efforts to characterize the thermal structure and its interaction with the fluid system for the area of the North East German Basin (NEGB). The relative impact of the different (diffusive and advective) processes affecting the hydrothermal setting of the basin are investigated by means of three- dimensional numerical simulations. Lithospheric-scale numerical models are evaluated to understand the specific thermal signature of the relevant factors influencing the present-day conductive geothermal field in the NEGB. Shallow and deep structural controls on the thermal configuration of the basin are addressed and quantified. Interaction between the resulting thermal field and the active fluid system is investigated by means of three-dimensional simulations of coupled fluid flow and heat transport. Factors influencing stability and reliability of modeling predictions are discussed. The main effort is to build a physically consistent model for the basin which integrates the impacts of thermal gradients on the regional fluid regime and their coupling with the main geological units defining the basin. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00092819 U6 - https://doi.org/10.1016/j.chemer.2010.05.017 SN - 0009-2819 ER - TY - JOUR A1 - Cherubini, Yvonne A1 - Cacace, Mauro A1 - Blöcher, Guido A1 - Scheck-Wenderoth, Magdalena T1 - Impact of single inclined faults on the fluid flow and heat transport - results from 3-D finite element simulations JF - Environmental earth sciences N2 - The impact of inclined faults on the hydrothermal field is assessed by adding simplified structural settings to synthetic models. This study is innovative in carrying out numerical simulations because it integrates the real 3-D nature of flow influenced by a fault in a porous medium, thereby providing a useful tool for complex geothermal modelling. The 3-D simulations for the coupled fluid flow and heat transport processes are based on the finite element method. In the model, one geological layer is dissected by a dipping fault. Sensitivity analyses are conducted to quantify the effects of the fault's transmissivity on the fluid flow and thermal field. Different fault models are compared with a model where no fault is present to evaluate the effect of varying fault transmissivity. The results show that faults have a significant impact on the hydrothermal field. Varying either the fault zone width or the fault permeability will result in relevant differences in the pressure, velocity and temperature field. A linear relationship between fault zone width and fluid velocity is found, indicating that velocities increase with decreasing widths. The faults act as preferential pathways for advective heat transport in case of highly transmissive faults, whereas almost no fluid may be transported through poorly transmissive faults. KW - Hydrothermal field KW - 3-D numerical simulations KW - Inclined faults KW - Fault zone KW - Coupled fluid flow and heat transport KW - Finite elements Y1 - 2013 U6 - https://doi.org/10.1007/s12665-012-2212-z SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3603 EP - 3618 PB - Springer CY - New York ER - TY - JOUR A1 - Cherubini, Yvonne A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena A1 - Moeck, Inga A1 - Lewerenz, Björn T1 - Controls on the deep thermal field - implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck JF - Environmental earth sciences N2 - The deep thermal field in sedimentary basins can be affected by convection, conduction or both resulting from the structural inventory, physical properties of geological layers and physical processes taking place therein. For geothermal energy extraction, the controlling factors of the deep thermal field need to be understood to delineate favorable drill sites and exploitation compartments. We use geologically based 3-D finite element simulations to figure out the geologic controls on the thermal field of the geothermal research site Gro Schonebeck located in the E part of the North German Basin. Its target reservoir consists of Permian Rotliegend clastics that compose the lower part of a succession of Late Carboniferous to Cenozoic sediments, subdivided into several aquifers and aquicludes. The sedimentary succession includes a layer of mobilized Upper Permian Zechstein salt which plays a special role for the thermal field due to its high thermal conductivity. Furthermore, the salt is impermeable and due to its rheology decouples the fault systems in the suprasalt units from subsalt layers. Conductive and coupled fluid and heat transport simulations are carried out to assess the relative impact of different heat transfer mechanisms on the temperature distribution. The measured temperatures in 7 wells are used for model validation and show a better fit with models considering fluid and heat transport than with a purely conductive model. Our results suggest that advective and convective heat transport are important heat transfer processes in the suprasalt sediments. In contrast, thermal conduction mainly controls the subsalt layers. With a third simulation, we investigate the influence of a major permeable and of three impermeable faults dissecting the subsalt target reservoir and compare the results to the coupled model where no faults are integrated. The permeable fault may have a local, strong impact on the thermal, pressure and velocity fields whereas the impermeable faults only cause deviations of the pressure field. KW - Thermal field KW - Coupled fluid and heat transport KW - Faults KW - Groß beta Schönebeck Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2519-4 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3619 EP - 3642 PB - Springer CY - New York ER - TY - JOUR A1 - Degen, Denise A1 - Spooner, Cameron A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro T1 - How biased are our models? BT - a case study of the alpine region JF - Geoscientific model development : an interactive open access journal of the European Geosciences Union N2 - Geophysical process simulations play a crucial role in the understanding of the subsurface. This understanding is required to provide, for instance, clean energy sources such as geothermal energy. However, the calibration and validation of the physical models heavily rely on state measurements such as temperature. In this work, we demonstrate that focusing analyses purely on measurements introduces a high bias. This is illustrated through global sensitivity studies. The extensive exploration of the parameter space becomes feasible through the construction of suitable surrogate models via the reduced basis method, where the bias is found to result from very unequal data distribution. We propose schemes to compensate for parts of this bias. However, the bias cannot be entirely compensated. Therefore, we demonstrate the consequences of this bias with the example of a model calibration. Y1 - 2021 U6 - https://doi.org/10.5194/gmd-14-7133-2021 SN - 1991-959X SN - 1991-9603 VL - 14 IS - 11 SP - 7133 EP - 7153 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Freymark, Jessica A1 - Bott, Judith A1 - Cacace, Mauro A1 - Ziegler, Moritz 0. A1 - Scheck-Wenderoth, Magdalena T1 - Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben JF - Geofluids N2 - The Upper Rhine Graben (URG) is an active rift with a high geothermal potential. Despite being a well-studied area, the three-dimensional interaction of the main controlling factors of the thermal and hydraulic regime is still not fully understood. Therefore, we have used a data-based 3D structural model of the lithological configuration of the central URG for some conceptual numerical experiments of 3D coupled simulations of fluid and heat transport. To assess the influence of the main faults bordering the graben on the hydraulic and the deep thermal field, we carried out a sensitivity analysis on fault width and permeability. Depending on the assigned width and permeability of the main border faults, fluid velocity and temperatures are affected only in the direct proximity of the respective border faults. Hence, the hydraulic characteristics of these major faults do not significantly influence the graben-wide groundwater flow patterns. Instead, the different scenarios tested provide a consistent image of the main characteristics of fluid and heat transport as they have in common: (1) a topography-driven basin-wide fluid flow perpendicular to the rift axis from the graben shoulders to the rift center, (2) a N/NE-directed flow parallel to the rift axis in the center of the rift and, (3) a pronounced upflow of hot fluids along the rift central axis, where the streams from both sides of the rift merge. This upflow axis is predicted to occur predominantly in the center of the URG (northern and southern model area) and shifted towards the eastern boundary fault (central model area). Y1 - 2019 U6 - https://doi.org/10.1155/2019/7520714 SN - 1468-8115 SN - 1468-8123 PB - Wiley-Hindawi CY - London ER - TY - GEN A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Bott, Judith A1 - Heidbach, Oliver A1 - Strecker, Manfred T1 - 3-D crustal density model of the Sea of Marmara T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible “end-member” solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 737 KW - North Anatolian Fault KW - Shear Zone KW - Northwestern Anatolia KW - Geomechanical Model KW - Tectonic Evolution KW - Slip Distribution KW - Middle Strand KW - Pull-Apart KW - Long-Term KW - NW Turkey Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434661 SN - 1866-8372 IS - 737 SP - 785 EP - 807 ER - TY - JOUR A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Bott, Judith A1 - Heidbach, Oliver A1 - Strecker, Manfred T1 - 3-D crustal density model of the Sea of Marmara JF - Solid Earth N2 - Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible “end-member” solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region. KW - North Anatolian Fault KW - Shear Zone KW - Northwestern Anatolia KW - Geomechanical Model KW - Tectonic Evolution KW - Slip Distribution KW - Middle Strand KW - Pull-Apart KW - Long-Term KW - NW Turkey Y1 - 2019 U6 - https://doi.org/10.5194/se-10-785-2019 SN - 1869-9510 SN - 1869-9529 VL - 10 SP - 785 EP - 807 PB - Copernicus Publ. CY - Göttingen ER - TY - GEN A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Sippel, Judith A1 - Strecker, Manfred T1 - Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean BT - the Southwest African and the Norwegian margins N2 - Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature–depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere–asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 414 KW - radiogenic heat-production KW - European basin system KW - lower crustal bodies KW - north-atlantic KW - subsidence analysis KW - sedimentary basins KW - tectonic evolution KW - Argentine margine KW - thermal field KW - voring basin Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409493 ER -