TY - JOUR A1 - Irob, Katja A1 - Blaum, Niels A1 - Baldauf, Selina A1 - Kerger, Leon A1 - Strohbach, Ben A1 - Kanduvarisa, Angelina A1 - Lohmann, Dirk A1 - Tietjen, Britta T1 - Browsing herbivores improve the state and functioning of savannas BT - A model assessment of alternative land-use strategies JF - Ecology and evolution N2 - Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle-dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land-use strategies on a Namibian savanna: grazer- versus browser-dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land-use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing-dominated land-use strategies, land-use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services. KW - browsing KW - ecohydrology KW - land use KW - plant community KW - savanna KW - wildlife KW - management Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8715 SN - 2045-7758 VL - 12 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lohmann, Dirk A1 - Tietjen, Britta A1 - Blaum, Niels A1 - Joubert, David F. A1 - Jeltsch, Florian T1 - Shifting thresholds and changing degradation patterns: climate change effects on the simulated long-term response of a semi-arid savanna to grazing JF - Journal of applied ecology : an official journal of the British Ecological Society N2 - 1. The complex, nonlinear response of dryland systems to grazing and climatic variations is a challenge to management of these lands. Predicted climatic changes will impact the desertification of drylands under domestic livestock production. Consequently, there is an urgent need to understand the response of drylands to grazing under climate change. 2. We enhanced and parameterized an ecohydrological savanna model to assess the impacts of a range of climate change scenarios on the response of a semi-arid African savanna to grazing. We focused on the effects of temperature and CO2 level increase in combination with changes in inter- and intra-annual precipitation patterns on the long-term dynamics of three major plant functional types. 3. We found that the capacity of the savanna to sustain livestock grazing was strongly influenced by climate change. Increased mean annual precipitation and changes in intra-annual precipitation pattern have the potential to slightly increase carrying capacities of the system. In contrast, decreased precipitation, higher interannual variation and temperature increase are leading to a severe decline of carrying capacities owing to losses of the perennial grass biomass. 4. Semi-arid rangelands will be at lower risk of shrub encroachment and encroachment will be less intense under future climatic conditions. This finding holds in spite of elevated levels of atmospheric CO2 and irrespective of changes in precipitation pattern, because of the drought sensitivity of germination and establishment of encroaching species. 5. Synthesis and applications. Changes in livestock carrying capacities, both positive and negative, mainly depend on the highly uncertain future rainfall conditions. However, independent of the specific changes, shrub encroachment becomes less likely and in many cases less severe. Thus, managers of semi-arid rangelands should shift their focus from woody vegetation towards perennial grass species as indicators for rangeland degradation. Furthermore, the resulting reduced competition from woody vegetation has the potential to facilitate ecosystem restoration measures such as re-introduction of desirable plant species that are only little promising or infeasible under current climatic conditions. On a global scale, the reductions in standing biomass resulting from altered degradation dynamics of semi-arid rangelands can have negative impacts on carbon sequestration. KW - CO2 increase KW - demographic bottleneck KW - ecohydrology KW - grid-based simulation model KW - livestock KW - precipitation pattern KW - savanna resilience KW - shrub encroachment KW - soil moisture KW - sustainable rangeland management Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2664.2012.02157.x SN - 0021-8901 VL - 49 IS - 4 SP - 814 EP - 823 PB - Wiley-Blackwell CY - Hoboken ER -