TY - JOUR A1 - Bouma, Sietske Jeltje Deirdre A1 - Richter, Philipp A1 - Wendt, Martin T1 - The relation between Ly alpha absorbers and local galaxy filaments JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The intergalactic medium (IGM) is believed to contain the majority of baryons in the universe and to trace the same dark matter structure as galaxies, forming filaments and sheets. Ly alpha absorbers, which sample the neutral component of the IGM, have been extensively studied at low and high redshift, but the exact relation between Ly alpha absorption, galaxies, and the large-scale structure is observationally not well constrained.Aims. In this study, we aim at characterising the relation between Ly alpha absorbers and nearby over-dense cosmological structures (galaxy filaments) at recession velocities Delta v <= 6700 km s(-1) by using archival observational data from various instruments.Methods. We analyse 587 intervening Ly alpha absorbers in the spectra of 302 extragalactic background sources obtained with the Cosmic Origins Spectrograph (COS) installed on the Hubble Space Telescope (HST). We combine the absorption line information with galaxy data of five local galaxy filaments from the V8k catalogue.Results. Along the 91 sightlines that pass close to a filament, we identify 215 (227) Ly alpha absorption systems (components). Among these, 74 Ly alpha systems are aligned in position and velocity with the galaxy filaments, indicating that these absorbers and the galaxies trace the same large-scale structure. The filament-aligned Ly alpha absorbers have a similar to 90% higher rate of incidence (d?/dz=189 for log N(HI) >= 13.2) and a slightly shallower column density distribution function slope (-beta=-1.47) relative to the general Ly alpha population at z=0, reflecting the filaments' matter over-density. The strongest Ly alpha absorbers are preferentially found near galaxies or close to the axis of a filament, although there is substantial scatter in this relation. Our sample of absorbers clusters more strongly around filament axes than a randomly distributed sample would do (as confirmed by a Kolmogorov-Smirnov test), but the clustering signal is less pronounced than for the galaxies in the filaments. KW - galaxies: halos KW - intergalactic medium KW - quasars: absorption lines KW - large-scale structure of Universe KW - techniques: spectroscopic KW - ultraviolet: general Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202039786 SN - 0004-6361 SN - 1432-0746 VL - 647 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Guber, Christoph Rudolf A1 - Richter, Philipp A1 - Wendt, Martin T1 - Multiple origins for the DLA at zabs = 0.313 toward PKS 1127–145 indicated by a complex dust depletion pattern of Ca, Ti, and Mn JF - Astronomy and astrophysics : an international weekly journal N2 - Aims: We aim to investigate the dust depletion properties of optically thick gas in and around galaxies and its origin we study in detail the dust depletion patterns of Ti, Mn, and Ca in the multi-component damped Lyman alpha (DLA) absorber at z(abs) = 0.313 toward the quasar PKS 1127-145. Methods: We performed a detailed spectral analysis of the absorption profiles of Ca II, Mn II, TIII, and Na I associated with the DLA toward PKS 1127-145, based on optical high-resolution data obtained with the UVES instrument at the Very Large Telescope. We obtained column densities and Doppler-parameters for the ions listed above and determine their gas-phase abundances, from which we conclude on their dust depletion properties. We compared the Ca and Ti depletion properties of this DLA with that of other DLAs. Results: One of the six analyzed absorption components (component 3) shows a striking underabundance of Ti and Mn in the gas-phase, indicating the effect of dust depletion for these elements and a locally enhanced dust-to-gas ratio. In this DLA and in other similar absorbers, the Mn II abundance follows that of Ti II very closely, implying that both ions are equally sensitive to the dust depletion effects. Conclusions: Our analysis indicates that the DLA toward PKS 1127 145 has multiple origins. With its narrow line width and its strong dust depletion, component 3 points toward the presence of a neutral gas disk from a faint LSB galaxy in front of PKS 1127 145, while the other, more diffuse and dust-poor, absorption components possibly are related to tidal gas features from the interaction between the various, optically confirmed galaxy-group members. In general, the Mn/Ca II ratio in sub-DLAs and DLAs possibly serves as an important indicator to discriminate between dust-rich and dust-poor in neutral gas in and around galaxies. KW - quasars: absorption lines KW - galaxies: abundances KW - intergalactic medium KW - quasars: individual: PKS1127-145 KW - dust, extinction KW - ISM: kinematics and dynamics Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201730984 SN - 1432-0746 VL - 609 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Fox, Andrew J. A1 - Barger, Kathleen A. A1 - Wakker, Bart P. A1 - Richter, Philipp A1 - Antwi-Danso, Jacqueline A1 - Casetti-Dinescu, Dana I. A1 - Howk, J. Christopher A1 - Lehner, Nicolas A1 - Crowther, Paul A. A1 - Lockman, Felix J. T1 - Chemical Abundances in the Leading Arm of the Magellanic Stream JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The Leading Arm (LA) of the Magellanic Stream is a vast debris field of H I clouds connecting the Milky Way and the Magellanic Clouds. It represents an example of active gas accretion onto the Galaxy. Previously, only one chemical abundance measurement had been made in the LA. Here we present chemical abundance measurements using Hubble Space Telescope/Cosmic Origins Spectrograph and Green Bank Telescope spectra of four AGN sightlines passing through the LA and three nearby sightlines that may trace outer fragments of the LA. We find low oxygen abundances, ranging from 4.0+(2.0)(2.0)% 12.6(4.1)(6.0)% solar, in the confirmed LA directions, with the lowest values found in the region known as LA III, farthest from the LMC. These abundances are substantially lower than the single previous measurement, S/H = 35 +/- 7% solar, but are in agreement with those reported in the SMC filament of the trailing Stream, supporting a common origin in the SMC (not the LMC) for the majority of the LA and trailing Stream. This provides important constraints for models of the formation of the Magellanic System. Finally, two of the three nearby sightlines show high-velocity clouds with H I columns, kinematics, and oxygen abundances consistent with LA membership. This suggests that the LA is larger than traditionally thought, extending at least 20 degrees further to the Galactic northwest. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aaa9bb SN - 0004-637X SN - 1538-4357 VL - 854 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richter, Philipp A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Howk, J. Christopher A1 - Lehner, Nicolas A1 - Barger, Kathleen A. A1 - Lockman, Felix J. T1 - New constraints on the nature and origin of the leading arm of the magellanic stream JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a new precision measurement of gas-phase abundances of S, O, N, Si, Fe, P, Al, Ca as well as molecular hydrogen (H-2) in the Leading Arm (region II, LA II) of the Magellanic Stream (MS) toward the Seyfert galaxy NGC 3783. The results are based on high-quality archival ultraviolet/optical/radio data from various different instruments (HST/STIS, FUSE, AAT, GBT, GB140 ft, ATCA). Our study updates previous results from lower-resolution data and provides for the first time a self-consistent component model of the complex multiphase absorber, delivering important constraints on the nature and origin of LA II. We derive a uniform, moderate a abundance in the two main absorber groups at +245 and +190 km s(-1) of alpha/H = 0.30 +/- 0.05 solar, a low nitrogen abundance of N/H = 0.05 +/- 0.01 solar, and a high dust content with substantial dust depletion values for Si, Fe, Al, and Ca. These a, N, and dust abundances in LA II are similar to those observed in the Small Magellanic Cloud (SMC). From the analysis of the H2 absorption, we determine a high thermal pressure of P/k approximate to 1680 K cm(-3) in LA II, in line with the idea that LA II is located in the inner Milky Way halo at a z-height of < 20 kpc, where it hydrodynamically interacts with the ambient hot coronal gas. Our study supports a scenario in which LA II stems from the breakup of a metal- and dust-enriched progenitor cloud that was recently (200-500 Myr ago) stripped from the SMC. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aadd0f SN - 0004-637X SN - 1538-4357 VL - 865 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richter, Philipp A1 - Winkel, Benjamin A1 - Wakker, Bart P. A1 - Pingel, N. M. A1 - Fox, Andrew J. A1 - Heald, G. A1 - Walterbos, Rene A. M. A1 - Fechner, C. A1 - Ben Bekhti, N. A1 - Gentile, G. A1 - Zschaechner, Laura T1 - Circumgalactic Gas at Its Extreme BT - Tidal Gas Streams around the Whale Galaxy NGC 4631 Explored with HST/COS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a detailed analysis of the absorption properties of one of the tidal gas streams around the "Whale" galaxy NGC 4631 in the direction of the quasar 2MASS J12421031+3214268. Our study is based on ultraviolet spectral data obtained with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST) and 21cm-data from the HALOGAS project and the Green Bank Telescope (GBT). We detect strong H I Ly alpha absorption in the velocity range +550 to +800 km s(-1) related to gas from a NGC 4631 tidal stream known as Spur 2. We measure a column density of log (N(H I/cm(-2))) = 18.68 +/- 0.15, indicating that the quasar sightline traces the outer boundary of Spur 2 as seen in the 21 cm data. Metal absorption in Spur 2 is detected in the lines of O I, C II, Si II, and Si III in a complex absorption pattern that reflects the multiphase nature of the gas. We find that the average neutral gas fraction in Spur 2 toward 2MASS J12421031+3214268 is only 14%. This implies that ionized gas dominates the total mass of Spur 2, which then may comprise more than 10(9)M(circle dot). No significant depletion of Si is observed, showing that Spur 2 does not contain significant amounts of dust. From the measured O I/H I column density ratio, we determine an alpha abundance in Spur 2 of 0.131(-0.05)(+0.07) solar ([alpha/H] = -0.90 +/- 0.16), which is substantially lower than what is observed in the NGC 4631 disk. The low metallicity and low dust content suggest that Spur 2 represents metal-deficient gas stripped off a gas-rich satellite galaxy during a recent encounter with NGC 4631. KW - galaxies: evolution KW - galaxies: halos KW - galaxies: interactions KW - ISM: abundances KW - quasars: absorption lines Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aae838 SN - 0004-637X SN - 1538-4357 VL - 868 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richter, Philipp A1 - Wakker, Bart P. A1 - Fechner, Cora A1 - Herenz, Peter A1 - Tepper-Garcia, T. A1 - Fox, Andrew J. T1 - An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies JF - Climate : open access journal N2 - Aims. Doubly ionized silicon (Si III) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening Si III-selected absorbers and study the properties of the warm circumgalactic medium (CGM) around low-redshift (z <= 0.1) galaxies. Methods. We analyzed the UV absorption spectra of 303 extragalactic background sources, as obtained with the Cosmic Origins Spectrograph (COS) on-board the Hubble Space Telescope (HST). We developed a geometrical model for the absorption-cross section of the CGM around the local galaxy population and compared the observed Si III absorption statistics with predictions provided by the model. We also compared redshifts and positions of the absorbers with those of similar to 64 000 galaxies using archival galaxy-survey data to investigate the relation between intervening Si III absorbers and the CGM. Results. Along a total redshift path of Delta z approximate to 24, we identify 69 intervening Si III systems that all show associated absorption from other low and high ions (e.g., H I, Si II, Si IV, C II, C IV). We derive a bias-corrected number density of dN/dz(Si III) = 2.5 +/- 0.4 for absorbers with column densities log N(Si III) > 12.2, which is similar to 3 times the number density of strong Mg II systems at z = 0. This number density matches the expected cross section of a Si III absorbing CGM around the local galaxy population with a mean covering fraction of < f(c)> = 0.69. For the majority (similar to 60 percent) of the absorbers, we identify possible host galaxies within 300 km s(-1) of the absorbers and derive impact parameters rho < 200 kpc, demonstrating that the spatial distributions of Si III absorbers and galaxies are highly correlated. Conclusions. Our study indicates that the majority of Si III-selected absorbers in our sample trace the CGM of nearby galaxies within their virial radii at a typical covering fraction of similar to 70 percent. We estimate that diffuse gas in the CGM around galaxies, as traced by Si III, contains substantially more (more than twice as much) baryonic mass than their neutral interstellar medium. KW - galaxies: halos KW - galaxies: formation KW - intergalactic medium KW - quasars: absorption lines Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527038 SN - 1432-0746 VL - 590 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Guber, Christoph R. A1 - Richter, Philipp T1 - Dust depletion of Ca and Ti in QSO absorption-line systems JF - Wiley Interdisciplinary Reviews : Water N2 - Aims. To explore the role of titanium-and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods. We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z <= 0.5 to measure column densities (or limits) for Ca II and Ti II. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z similar to 3.8. Our absorber sample contains 110 absorbers including damped Lyman alpha systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the MilkyWay and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results. Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] approximate to 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions. We conclude that Ca II and Ti II bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems. KW - quasars: absorption lines KW - dust, extinction KW - galaxies: abundances KW - galaxies: ISM KW - intergalactic medium Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628466 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Richter, Philipp A1 - Fox, Andrew J. A1 - Ben Bekhti, Nadya A1 - Murphy, M. T. A1 - Bomans, Dominik J. A1 - Frank, S. T1 - High-resolution absorption spectroscopy of the circumgalactic medium of the Milky Way JF - Astronomische Nachrichten = Astronomical notes KW - Galaxy: halo KW - Galaxy: structure KW - quasars: absorption lines KW - techniques: spectroscopic Y1 - 2014 U6 - https://doi.org/10.1002/asna.201312013 SN - 0004-6337 SN - 1521-3994 VL - 335 IS - 1 SP - 92 EP - 98 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Barger, Kathleen A. A1 - Hernandez, Audra K. A1 - Richter, Philipp A1 - Lehner, Nicolas A1 - Bland-Hawthorn, Joss A1 - Charlton, Jane C. A1 - Westmeier, Tobias A1 - Thom, Christopher A1 - Tumlinson, Jason A1 - Misawa, Toru A1 - Howk, J. Christopher A1 - Haffner, L. Matthew A1 - Ely, Justin A1 - Rodriguez-Hidalgo, Paola A1 - Kumari, Nimisha T1 - The COS/UVES absorption survey of the magellanic stream. III. Ionization, total mass, and inflow rate onto the milky way JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is approximate to 11,000 deg(2), or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be approximate to 2.0 x 10(9) M-circle dot (d/55 kpc)(2), with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of similar to 0.5-1.0 Gyr, it will represent an average inflow rate of similar to 3.7-6.7 M-circle dot yr(-1), potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/787/2/147 SN - 0004-637X SN - 1538-4357 VL - 787 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richter, Philipp A1 - Krause, F. A1 - Fechner, Cora A1 - Charlton, Jane C. A1 - Murphy, M. T. T1 - The neutral gas extent of galaxies as derived from weak intervening Ca II absorbers JF - Astronomy and astrophysics : an international weekly journal N2 - We present a systematic study of weak intervening CaII absorbers at low redshift (z < 0.5), based on the analysis of archival high-resolution (R >= 45 000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Delta z approximate to 100 we detected 23 intervening CaII absorbers in both the CaII H & K lines, with rest frame equivalent widths W-r,W-3934 = 15-799 m angstrom and column densities log N(CaII) = 11.25-13.04 (obtained by fitting Voigt-profile components). We obtain a bias-corrected number density of weak intervening CaII absorbers of dN/dz = 0.117 +/- 0.044 at < z(abs)> = 0.35 for absorbers with log N(CaII) >= 11.65 (W-r,W-3934 >= 32 m angstrom). This is similar to 2.6 times the value obtained for damped Lyman alpha absorbers (DLAs) at low redshift. All CaII absorbers in our sample show associated absorption by other low ions such as MgII and FeII; 45 percent of them have associated NaI absorption. From ionization modelling we conclude that intervening CaII absorption with log N(CaII) >= 11.5 arises in DLAs, sub-DLAs and Lyman-limit systems (LLS) at HI column densities of log N(HI) >= 17.4. Using supplementary HI information for nine of the absorbers we find that the CaII/HI ratio decreases strongly with increasing HI column density, indicating a column-density-dependent dust depletion of Ca. The observed column density distribution function of CaII absorption components follows a relatively steep power law, f(N) proportional to N-beta, with a slope of -beta = -1.68, which again points towards an enhanced dust depletion in high column density systems. The relatively large cross section of these absorbers together with the frequent detection of CaII absorption in high-velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening CaII systems trace (partly) neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Based on the recently measured detection rate of CaII absorption in the Milky Way HVCs we estimate that the mean (projected) CaII covering fraction of galaxies and their gaseous halos is < f(c,CaII)> = 0.33. Using this value and considering all galaxies with luminosities L >= 0.05 L-star we calculate that the characteristic radial extent of (partly) neutral gas clouds with log N(HI) >= 17.4 around low-redshift galaxies is R-HVC approximate to 55 kpc. KW - galaxies: halos KW - galaxies: formation KW - galaxies: ISM KW - intergalactic medium KW - quasars: absorption lines Y1 - 2011 U6 - https://doi.org/10.1051/0004-6361/201015566 SN - 0004-6361 VL - 528 IS - 4 PB - EDP Sciences CY - Les Ulis ER -