TY - JOUR A1 - Sparre, Martin A1 - Whittingham, Joseph A1 - Damle, Mitali A1 - Hani, Maan H. A1 - Richter, Philipp A1 - Ellison, Sara L. A1 - Pfrommer, Christoph A1 - Vogelsberger, Mark T1 - Gas flows in galaxy mergers BT - supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution JF - Monthly notices of the Royal Astronomical Society N2 - In major galaxy mergers, the orbits of stars are violently perturbed, and gas is torqued to the centre, diluting the gas metallicity and igniting a starburst. In this paper, we study the gas dynamics in and around merging galaxies using a series of cosmological magnetohydrodynamical zoom-in simulations. We find that the gas bridge connecting the merging galaxies pre-coalescence is dominated by turbulent pressure, with turbulent Mach numbers peaking at values of 1.6-3.3. This implies that bridges are dominated by supersonic turbulence, and are thus ideal candidates for studying the impact of extreme environments on star formation. We also find that gas accreted from the circumgalactic medium (CGM) during the merger significantly contributes (27-51 percent) to the star formation rate (SFR) at the time of coalescence and drives the subsequent reignition of star formation in the merger remnant. Indeed, 19-53 percent of the SFR at z = 0 originates from gas belonging to the CGM prior the merger. Finally, we investigate the origin of the metallicity-diluted gas at the centre of merging galaxies. We show that this gas is rapidly accreted on to the Galactic Centre with a time-scale much shorter than that of normal star-forming galaxies. This explains why coalescing galaxies are not well-captured by the fundamental metallicity relation. KW - MHD KW - methods: numerical KW - galaxies: interactions KW - galaxies: starburst Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3171 SN - 1365-2966 VL - 509 IS - 2 SP - 2720 EP - 2735 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Richter, Philipp T1 - Hot gas in galaxy halos traced by coronal broad Lyα absorbers JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We explore the possibility to systematically study the extended, hot gaseous halos of low-redshift galaxies with coronal broad Lya absorbers (CBLAs). These are weak, thermally broadenend H I absorption lines arising from the tiny fraction of neutral hydrogen that resides in the collisionally ionized, million-degree halo gas in these galaxies. Using a semi-analytic approach, we model the spatial density and temperature distribution of hot coronal gas to predict strength, spectral shape, and cross section of CBLAs as a function of galaxy-halo mass and line-of-sight impact parameter. For virial halo masses in the range log M M = 10.6 12.6, the characteristic logarithmic CBLA H I column densities and Doppler parameters are log N(H I) = 12.4- 13.4 and b(H I).=.70-200 km s-1, indicating that CBLAs represent weak, shallow spectral features that are difficult to detect. Yet, the expected number density of CBLAs per unit redshift in the above given mass range is d. dz(CBLA). 3, implying that CBLAs have a substantial absorption cross section. We compare the model predictions with a combined set of UV absorption-line spectra from the Hubble Space Telescope (HST)/Cosmic Origins Spectrograph and HST/Space Telescope Imaging Spectrograph that trace the halos of four low-redshift galaxies. We demonstrate that CBLAs might already have been detected in these spectra, but the complex multi-component structure and the limited signal-to-noise ratio complicate the interpretation of these CBLA candidate systems. Our study suggests that CBLAs represent a very interesting absorber class that potentially will allow us to further explore the hot coronae of galaxies with UV spectral data. Y1 - 2020 U6 - https://doi.org/10.3847/1538-4357/ab7937 SN - 0004-637X SN - 1538-4357 VL - 892 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bouma, Sietske Jeltje Deirdre A1 - Richter, Philipp A1 - Wendt, Martin T1 - The relation between Ly alpha absorbers and local galaxy filaments JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The intergalactic medium (IGM) is believed to contain the majority of baryons in the universe and to trace the same dark matter structure as galaxies, forming filaments and sheets. Ly alpha absorbers, which sample the neutral component of the IGM, have been extensively studied at low and high redshift, but the exact relation between Ly alpha absorption, galaxies, and the large-scale structure is observationally not well constrained.Aims. In this study, we aim at characterising the relation between Ly alpha absorbers and nearby over-dense cosmological structures (galaxy filaments) at recession velocities Delta v <= 6700 km s(-1) by using archival observational data from various instruments.Methods. We analyse 587 intervening Ly alpha absorbers in the spectra of 302 extragalactic background sources obtained with the Cosmic Origins Spectrograph (COS) installed on the Hubble Space Telescope (HST). We combine the absorption line information with galaxy data of five local galaxy filaments from the V8k catalogue.Results. Along the 91 sightlines that pass close to a filament, we identify 215 (227) Ly alpha absorption systems (components). Among these, 74 Ly alpha systems are aligned in position and velocity with the galaxy filaments, indicating that these absorbers and the galaxies trace the same large-scale structure. The filament-aligned Ly alpha absorbers have a similar to 90% higher rate of incidence (d?/dz=189 for log N(HI) >= 13.2) and a slightly shallower column density distribution function slope (-beta=-1.47) relative to the general Ly alpha population at z=0, reflecting the filaments' matter over-density. The strongest Ly alpha absorbers are preferentially found near galaxies or close to the axis of a filament, although there is substantial scatter in this relation. Our sample of absorbers clusters more strongly around filament axes than a randomly distributed sample would do (as confirmed by a Kolmogorov-Smirnov test), but the clustering signal is less pronounced than for the galaxies in the filaments. KW - galaxies: halos KW - intergalactic medium KW - quasars: absorption lines KW - large-scale structure of Universe KW - techniques: spectroscopic KW - ultraviolet: general Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202039786 SN - 0004-6361 SN - 1432-0746 VL - 647 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Richter, Philipp ED - Fox, Andrew J. ED - Davé, Romeel T1 - Gas accretion onto the Milky Way JF - Astrophysics and space science library N2 - The Milky Way is surrounded by large amounts of gaseous matter that are slowly being accreted over cosmic timescales to support star formation in the disk. The corresponding gas-accretion rate represents a key parameter for the past, present, and future evolution of the Milky Way. In this chapter, we discuss our current understanding of gas accretion processes in the Galaxy by reviewing past and recent observational and theoretical studies. The first part of this review deals with the spatial distribution of the different gas phases in the Milky Way halo, the origin of the gas, and its total mass. The second part discusses the gas dynamics and the physical processes that regulate the gas flow from the outer Galactic halo to the disk. From the most recent studies follows that the present-day gas accretion rate of the Milky Way is a few solar masses per year, which is sufficient to maintain the Galaxy’s star-formation rate at its current level. Y1 - 2017 SN - 978-3-319-52512-9 SN - 978-3-319-52511-2 U6 - https://doi.org/10.1007/978-3-319-52512-9_2 SN - 0067-0057 VL - 430 SP - 15 EP - 47 PB - Springer CY - Cham ER - TY - JOUR A1 - Guber, Christoph Rudolf A1 - Richter, Philipp A1 - Wendt, Martin T1 - Multiple origins for the DLA at zabs = 0.313 toward PKS 1127–145 indicated by a complex dust depletion pattern of Ca, Ti, and Mn JF - Astronomy and astrophysics : an international weekly journal N2 - Aims: We aim to investigate the dust depletion properties of optically thick gas in and around galaxies and its origin we study in detail the dust depletion patterns of Ti, Mn, and Ca in the multi-component damped Lyman alpha (DLA) absorber at z(abs) = 0.313 toward the quasar PKS 1127-145. Methods: We performed a detailed spectral analysis of the absorption profiles of Ca II, Mn II, TIII, and Na I associated with the DLA toward PKS 1127-145, based on optical high-resolution data obtained with the UVES instrument at the Very Large Telescope. We obtained column densities and Doppler-parameters for the ions listed above and determine their gas-phase abundances, from which we conclude on their dust depletion properties. We compared the Ca and Ti depletion properties of this DLA with that of other DLAs. Results: One of the six analyzed absorption components (component 3) shows a striking underabundance of Ti and Mn in the gas-phase, indicating the effect of dust depletion for these elements and a locally enhanced dust-to-gas ratio. In this DLA and in other similar absorbers, the Mn II abundance follows that of Ti II very closely, implying that both ions are equally sensitive to the dust depletion effects. Conclusions: Our analysis indicates that the DLA toward PKS 1127 145 has multiple origins. With its narrow line width and its strong dust depletion, component 3 points toward the presence of a neutral gas disk from a faint LSB galaxy in front of PKS 1127 145, while the other, more diffuse and dust-poor, absorption components possibly are related to tidal gas features from the interaction between the various, optically confirmed galaxy-group members. In general, the Mn/Ca II ratio in sub-DLAs and DLAs possibly serves as an important indicator to discriminate between dust-rich and dust-poor in neutral gas in and around galaxies. KW - quasars: absorption lines KW - galaxies: abundances KW - intergalactic medium KW - quasars: individual: PKS1127-145 KW - dust, extinction KW - ISM: kinematics and dynamics Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201730984 SN - 1432-0746 VL - 609 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Fox, Andrew J. A1 - Barger, Kathleen A. A1 - Wakker, Bart P. A1 - Richter, Philipp A1 - Antwi-Danso, Jacqueline A1 - Casetti-Dinescu, Dana I. A1 - Howk, J. Christopher A1 - Lehner, Nicolas A1 - Crowther, Paul A. A1 - Lockman, Felix J. T1 - Chemical Abundances in the Leading Arm of the Magellanic Stream JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The Leading Arm (LA) of the Magellanic Stream is a vast debris field of H I clouds connecting the Milky Way and the Magellanic Clouds. It represents an example of active gas accretion onto the Galaxy. Previously, only one chemical abundance measurement had been made in the LA. Here we present chemical abundance measurements using Hubble Space Telescope/Cosmic Origins Spectrograph and Green Bank Telescope spectra of four AGN sightlines passing through the LA and three nearby sightlines that may trace outer fragments of the LA. We find low oxygen abundances, ranging from 4.0+(2.0)(2.0)% 12.6(4.1)(6.0)% solar, in the confirmed LA directions, with the lowest values found in the region known as LA III, farthest from the LMC. These abundances are substantially lower than the single previous measurement, S/H = 35 +/- 7% solar, but are in agreement with those reported in the SMC filament of the trailing Stream, supporting a common origin in the SMC (not the LMC) for the majority of the LA and trailing Stream. This provides important constraints for models of the formation of the Magellanic System. Finally, two of the three nearby sightlines show high-velocity clouds with H I columns, kinematics, and oxygen abundances consistent with LA membership. This suggests that the LA is larger than traditionally thought, extending at least 20 degrees further to the Galactic northwest. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aaa9bb SN - 0004-637X SN - 1538-4357 VL - 854 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Muzahid, S. A1 - Fonseca, G. A1 - Roberts, A. A1 - Rosenwasser, B. A1 - Richter, Philipp A1 - Narayanan, A. A1 - Churchill, C. A1 - Charlton, J. T1 - COS-Weak: probing the CGM using analogues of weak Mg II absorbers at z < 0.3 JF - Monthly notices of the Royal Astronomical Society N2 - We present a sample of 34 weak metal line absorbers at z < 0.3 selected by the simultaneous >3σ detections of the Si iiλ1260 and C iiλ1334 absorption lines, with Wr(SiII)<0.2 Å and Wr(CII)<0.3 Å, in archival HST/COS spectra. Our sample increases the number of known low-z ‘weak absorbers’ by a factor of >5. The column densities of H i and low-ionization metal lines obtained from Voigt profile fitting are used to build simple photoionization models. The inferred densities and line-of-sight thicknesses of the absorbers are in the ranges of −3.3 < log nH/cm−3 < −2.4 and ∼1 pc–50 kpc (median ≈500 pc), respectively. Most importantly, 85 per cent (50 per cent) of these absorbers show a metallicity of [Si/H]>−1.0(0.0)⁠. The fraction of systems showing near-/supersolar metallicity in our sample is significantly higher than in the H i-selected sample of Wotta et al., and the galaxy-selected sample of Prochaska et al., of absorbers probing the circum-galactic medium at similar redshift. A search for galaxies has revealed a significant galaxy-overdensity around these weak absorbers compared to random positions with a median impact parameter of 166 kpc from the nearest galaxy. Moreover, we find the presence of multiple galaxies in ≈80 per cent of the cases, suggesting group environments. The observed dN/dz of 0.8 ± 0.2 indicates that such metal-enriched, compact, dense structures are ubiquitous in the haloes of low-z group galaxies. We suggest that these are transient structures that are related to galactic outflows and/or stripping of metal-rich gas from galaxies. KW - galaxies: formation KW - galaxies: haloes KW - quasar: absorption line Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty529 SN - 0035-8711 SN - 1365-2966 VL - 476 IS - 4 SP - 4965 EP - 4986 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zhang, Heshou A1 - Yan, Huirong A1 - Richter, Philipp T1 - The influence of atomic alignment on absorption and emission spectroscopy JF - Monthly notices of the Royal Astronomical Society N2 - Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in our Universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionization fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of Photodissociation regions in rho Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability. KW - magnetic fields KW - submillimetre: ISM KW - ultraviolet: ISM KW - ISM: abundances KW - ISM: lines and bands KW - techniques: spectroscopic Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty1594 SN - 0035-8711 SN - 1365-2966 VL - 479 IS - 3 SP - 3923 EP - 3935 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Richter, Philipp A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Howk, J. Christopher A1 - Lehner, Nicolas A1 - Barger, Kathleen A. A1 - Lockman, Felix J. T1 - New constraints on the nature and origin of the leading arm of the magellanic stream JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a new precision measurement of gas-phase abundances of S, O, N, Si, Fe, P, Al, Ca as well as molecular hydrogen (H-2) in the Leading Arm (region II, LA II) of the Magellanic Stream (MS) toward the Seyfert galaxy NGC 3783. The results are based on high-quality archival ultraviolet/optical/radio data from various different instruments (HST/STIS, FUSE, AAT, GBT, GB140 ft, ATCA). Our study updates previous results from lower-resolution data and provides for the first time a self-consistent component model of the complex multiphase absorber, delivering important constraints on the nature and origin of LA II. We derive a uniform, moderate a abundance in the two main absorber groups at +245 and +190 km s(-1) of alpha/H = 0.30 +/- 0.05 solar, a low nitrogen abundance of N/H = 0.05 +/- 0.01 solar, and a high dust content with substantial dust depletion values for Si, Fe, Al, and Ca. These a, N, and dust abundances in LA II are similar to those observed in the Small Magellanic Cloud (SMC). From the analysis of the H2 absorption, we determine a high thermal pressure of P/k approximate to 1680 K cm(-3) in LA II, in line with the idea that LA II is located in the inner Milky Way halo at a z-height of < 20 kpc, where it hydrodynamically interacts with the ambient hot coronal gas. Our study supports a scenario in which LA II stems from the breakup of a metal- and dust-enriched progenitor cloud that was recently (200-500 Myr ago) stripped from the SMC. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aadd0f SN - 0004-637X SN - 1538-4357 VL - 865 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wisotzki, Lutz A1 - Bacon, R. A1 - Brinchmann, J. A1 - Cantalupo, S. A1 - Richter, Philipp A1 - Schaye, J. A1 - Schmidt, Kasper Borello A1 - Urrutia, Tanya A1 - Weilbacher, Peter Michael A1 - Akhlaghi, M. A1 - Bouche, N. A1 - Contini, T. A1 - Guiderdoni, B. A1 - Herenz, E. C. A1 - Inami, H. A1 - Kerutt, Josephine Victoria A1 - Leclercq, F. A1 - Marino, R. A. A1 - Maseda, M. A1 - Monreal-Ibero, A. A1 - Nanayakkara, T. A1 - Richard, J. A1 - Saust, R. A1 - Steinmetz, Matthias A1 - Wendt, Martin T1 - Nearly all the sky is covered by Lyman-alpha emission around high-redshift galaxies JF - Nature : the international weekly journal of science N2 - Galaxies are surrounded by large reservoirs of gas, mostly hydrogen, that are fed by inflows from the intergalactic medium and by outflows from galactic winds. Absorption-line measurements along the lines of sight to bright and rare background quasars indicate that this circumgalactic medium extends far beyond the starlight seen in galaxies, but very little is known about its spatial distribution. The Lyman-alpha transition of atomic hydrogen at a wavelength of 121.6 nanometres is an important tracer of warm (about 104 kelvin) gas in and around galaxies, especially at cosmological redshifts greater than about 1.6 at which the spectral line becomes observable from the ground. Tracing cosmic hydrogen through its Lyman-a emission has been a long-standing goal of observational astrophysics(1-3), but the extremely low surface brightness of the spatially extended emission is a formidable obstacle. A new window into circumgalactic environments was recently opened by the discovery of ubiquitous extended Lyman-alpha emission from hydrogen around high-redshift galaxies(4,5). Such measurements were previously limited to especially favourable systems(6-8) or to the use of massive statistical averaging(9,10) because of the faintness of this emission. Here we report observations of low-surface-brightness Lyman-alpha emission surrounding faint galaxies at redshifts between 3 and 6. We find that the projected sky coverage approaches 100 per cent. The corresponding rate of incidence (the mean number of Lyman-alpha emitters penetrated by any arbitrary line of sight) is well above unity and similar to the incidence rate of high-column-density absorbers frequently detected in the spectra of distant quasars(11-14). This similarity suggests that most circumgalactic atomic hydrogen at these redshifts has now been detected in emission. Y1 - 2018 U6 - https://doi.org/10.1038/s41586-018-0564-6 SN - 0028-0836 SN - 1476-4687 VL - 562 IS - 7726 SP - 229 EP - 232 PB - Nature Publ. Group CY - London ER -