TY - JOUR A1 - Zeuschner, Steffen Peer A1 - Wang, Xi-Guang A1 - Deb, Marwan A1 - Popova, Elena A1 - Malinowski, Gregory A1 - Hehn, Michel A1 - Keller, Niels A1 - Berakdar, Jamal A1 - Bargheer, Matias T1 - Standing spin wave excitation in Bi BT - YIG films via temperature-induced anisotropy changes and magneto-elastic coupling JF - Physical review : B, Condensed matter and materials physics N2 - Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics after the direct optical excitation of the magnetic insulator Bi : YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magneto-elastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: the magneto-elastic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that, for direct excitation, both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin wave amplitudes of higher-order modes indicates that both mechanisms are substantially active. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.134401 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 13 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Deb, Marwan A1 - Popova, Elena A1 - Hehn, Michel A1 - Keller, Niels A1 - Petit-Watelot, Sebastien A1 - Bargheer, Matias A1 - Mangin, Stephane A1 - Malinowski, Gregory T1 - Femtosecond Laser-Excitation-Driven High Frequency Standing Spin Waves in Nanoscale Dielectric Thin Films of Iron Garnets JF - Physical review letters N2 - We demonstrate that femtosecond laser pulses allow triggering high-frequency standing spin-wave modes in nanoscale thin films of a bismuth-substituted yttrium iron garnet. By varying the strength of the external magnetic field, we prove that two distinct branches of the dispersion relation are excited for all the modes. This is reflected in particular at a very weak magnetic field (similar to 33 mT) by a spin dynamics with a frequency up to 15 GHz, which is 15 times higher than the one associated with the ferromagnetic resonance mode. We argue that this phenomenon is triggered by ultrafast changes of the magnetic anisotropy via laser excitation of incoherent and coherent phonons. These findings open exciting prospects for ultrafast photo magnonics. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevLett.123.027202 SN - 0031-9007 SN - 1079-7114 VL - 123 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Deb, Marwan A1 - Popova, Elena A1 - Hehn, Michel A1 - Keller, Niels A1 - Petit-Watelot, Sebastien A1 - Bargheer, Matias A1 - Mangin, Stephane A1 - Malinowski, Gregory T1 - Damping of Standing Spin Waves in Bismuth-Substituted Yttrium Iron Garnet as Seen via the Time-Resolved Magneto-Optical Kerr Effect JF - Physical review applied N2 - We investigate spin-wave resonance modes and their damping in insulating thin films of bismuth-substituted yttrium iron garnet by performing femtosecond magneto-optical pump-probe experiments. For large magnetic fields in the range below the magnetization saturation, we find that the damping of high-order standing spin-wave (SSW) modes is about 40 times lower than that for the fundamental one. The observed phenomenon can be explained by considering different features of magnetic anisotropy and exchange fields that, respectively, define the precession frequency for fundamental and high-order SSWs. These results provide further insight into SSWs in iron garnets and may be exploited in many new photomagnonic devices. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevApplied.12.044006 SN - 2331-7019 VL - 12 IS - 4 PB - American Physical Society CY - College Park ER -