TY - JOUR A1 - Surlan, B. A1 - Hamann, Wolf-Rainer A1 - Aret, A. A1 - Kubat, Jiří A1 - Oskinova, Lida A1 - Torres, A. F. T1 - Macroclumping as solution of the discrepancy between Ha and P v mass loss diagnostics for O-type stars JF - ASTRONOMY & ASTROPHYSICS N2 - Context. Recent studies of O-type stars have demonstrated that discrepant mass-loss rates are obtained when different diagnostic methods are employed. Fitting the unsaturated UV resonance lines (e.g., P v) gives drastically lower values than obtained from the Ha emission. Wind inhomogeneity (so-called "clumping") may be the main cause of this discrepancy. Aims. In a previous paper, we presented 3D Monte-Carlo calculations for the formation of scattering lines in a clumped stellar wind. In the present paper we select five O-type supergiants (from 04 to 07) and test whether the reported discrepancies can be resolved this way. Methods. In the first step, the analyses started with simulating the observed spectra with Potsdam Wolf-Rayet (PoWR) non-LTE model atmospheres. The mass-loss rates are adjusted to fit to the observed Ha emission lines best. For the unsaturated UV resonance lines (i.e., P v) we then applied our 3D Monte-Carlo code, which can account for wind clumps of any optical depths ("macroclumping"), a non-void interclump medium, and a velocity dispersion inside the clumps. The ionization stratifications and underlying photospheric spectra were adopted from the PoWR models. The properties of the wind clumps were constrained by fitting the observed resonance line profiles. Results. Our results show that with the mass-loss rates that fit Ha (and other Balmer and He II lines), the UV resonance lines (especially the unsaturated doublet of P v) can also be reproduced with no problem when macroclumping is taken into account. There is no need to artificially reduce the mass-loss rates or to assume a subsolar phosphorus abundance or an extremely high clumping factor, unlike what was claimed by other authors. These consistent mass-loss rates are lower by a factor of 1.3 to 2.6, compared to the mass-loss rate recipe from Vink et al. Conclusions. Macroclumping resolves the previously reported discrepancy between Ha and P v mass-loss diagnostics. KW - stars: winds, outflows KW - stars: mass-loss KW - stars: early-type Y1 - 2013 U6 - https://doi.org/10.1051/0004-6361/201322390 SN - 0004-6361 SN - 1432-0746 VL - 559 PB - EDP SCIENCES S A CY - LES ULIS CEDEX A ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Schoeller, M. A1 - Ilyin, Ilya A1 - Kharchenko, N. V. A1 - Oskinova, Lida A1 - Langer, N. A1 - Gonzalez, J. F. A1 - Kholtygin, A. F. A1 - Briquet, Maryline T1 - Exploring the origin of magnetic fields in massive stars - II. New magnetic field measurements in cluster and field stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. Additional observations are of utmost importance to constrain the conditions that are conducive to magnetic fields and to determine first trends about their occurrence rate and field strength distribution. Aims. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FOcal Reducer low dispersion Spectrograph (FORS 2) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6 m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results. The presence of a magnetic field is confirmed in nine stars previously observed with FORS 1/2: HD36879, HD47839, CPD-28 2561, CPD-47 2963, HD93843, HD148937, HD149757, HD328856, and HD164794. New magnetic field detections at a significance level of at least 3 sigma were achieved in five stars: HD92206c, HD93521, HD93632, CPD-46 8221, and HD157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to previous kinematic studies, five magnetic O-type stars in our sample are candidate runaway stars. KW - polarization KW - stars: early-type KW - stars: kinematics and dynamics KW - stars: magnetic field KW - stars: massive KW - open clusters and associations: general Y1 - 2013 U6 - https://doi.org/10.1051/0004-6361/201220721 SN - 0004-6361 VL - 551 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ignace, Richard A1 - Oskinova, Lida A1 - Massa, D. T1 - A report on the X-ray properties of the tau Sco-like stars JF - Monthly notices of the Royal Astronomical Society N2 - An increasing number of OB stars have been shown to possess magnetic fields. Although the sample remains small, it is surprising that the magnetic and X-ray properties of these stars appear to be far less correlated than expected. This contradicts model predictions, which generally indicate that the X-rays from magnetic stars are harder and more luminous than their non-magnetic counterparts. Instead, the X-ray properties of magnetic OB stars are quite diverse. tau Sco is one example where the expectations are better met. This bright main-sequence, early B star has been studied extensively in a variety of wavebands. It has a surface magnetic field of around 500 G, and Zeeman Doppler tomography has revealed an unusual field configuration. Furthermore, tau Sco displays an unusually hard X-ray spectrum, much harder than similar, non-magnetic OB stars. In addition, the profiles of its UV P Cygni wind lines have long been known to possess a peculiar morphology. Recently, two stars, HD 66665 and HD 63425, whose spectral types and UV wind line profiles are similar to those of tau Sco, have also been determined to be magnetic. In the hope of establishing a magnetic field - X-ray connection for at least a subset of the magnetic stars, we obtained XMM-Newton European Photon Imaging Camera spectra of these two objects. Our results for HD 66665 are somewhat inconclusive. No especially strong hard component is detected; however, the number of source counts is insufficient to rule out hard emission. Longer exposure is needed to assess the nature of the X-rays from this star. On the other hand, we do find that HD 63425 has a substantial hard X-ray component, thereby bolstering its close similarity to tau Sco. KW - stars: early-type KW - stars: individual: HD 63425 KW - stars: individual: HD 66665 KW - stars: magnetic field KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1093/mnras/sts358 SN - 0035-8711 VL - 429 IS - 1 SP - 516 EP - 522 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Naze, Yael A1 - Oskinova, Lida A1 - Gosset, Eric T1 - A detailed x-ray investigation of zeta puppis - II. the variability on short and long timescales JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Stellar winds are a crucial component of massive stars, but their exact properties still remain uncertain. To shed some light on this subject, we have analyzed an exceptional set of X-ray observations of zeta Puppis, one of the closest and brightest massive stars. The sensitive light curves that were derived reveal two major results. On the one hand, a slow modulation of the X-ray flux (with a relative amplitude of up to 15% over 16 hr in the 0.3-4.0 keV band) is detected. Its characteristic timescale cannot be determined with precision, but amounts from one to several days. It could be related to corotating interaction regions, known to exist in zeta Puppis from UV observations. Hour-long changes, linked to flares or to the pulsation activity, are not observed in the last decade covered by the XMM observations; the 17 hr tentative period, previously reported in a ROSAT analysis, is not confirmed either and is thus transient, at best. On the other hand, short-term changes are surprisingly small (<1% relative amplitude for the total energy band). In fact, they are compatible solely with the presence of Poisson noise in the data. This surprisingly low level of short-term variability, in view of the embedded wind-shock origin, requires a very high fragmentation of the stellar wind, for both absorbing and emitting features (>10(5) parcels, comparing with a two-dimensional wind model). This is the first time that constraints have been placed on the number of clumps in an O-type star wind and from X-ray observations. KW - stars: early-type KW - stars: individual (zeta Pup) KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/763/2/143 SN - 0004-637X VL - 763 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER -