TY - JOUR A1 - Pasemann, Gregor A1 - Flemming, Sven A1 - Alonso, Sergio A1 - Beta, Carsten A1 - Stannat, Wilhelm T1 - Diffusivity estimation for activator-inhibitor models BT - theory and application to intracellular dynamics of the actin cytoskeleton JF - Journal of nonlinear science N2 - A theory for diffusivity estimation for spatially extended activator-inhibitor dynamics modeling the evolution of intracellular signaling networks is developed in the mathematical framework of stochastic reaction-diffusion systems. In order to account for model uncertainties, we extend the results for parameter estimation for semilinear stochastic partial differential equations, as developed in Pasemann and Stannat (Electron J Stat 14(1):547-579, 2020), to the problem of joint estimation of diffusivity and parametrized reaction terms. Our theoretical findings are applied to the estimation of effective diffusivity of signaling components contributing to intracellular dynamics of the actin cytoskeleton in the model organism Dictyostelium discoideum. KW - Parametric drift estimation KW - Stochastic reaction– diffusion KW - systems KW - Maximum likelihood estimation KW - Actin cytoskeleton dynamics Y1 - 2021 U6 - https://doi.org/10.1007/s00332-021-09714-4 SN - 0938-8974 SN - 1432-1467 VL - 31 IS - 3 PB - Springer CY - New York ER - TY - JOUR A1 - Stubning, Tobias A1 - Denes, Istvan A1 - Gerhard, Reimund T1 - Tuning electro-mechanical properties of EAP-based haptic actuators by adjusting layer thickness and number of stacked layers BT - a comparison JF - Engineering research express N2 - In our fast-changing world, human-machine interfaces (HMIs) are of ever-increasing importance. Among the most ubiquitous examples are touchscreens that most people are familiar with from their smartphones. The quality of such an HMI can be improved by adding haptic feedback-an imitation of using mechanical buttons-to the touchscreen. Thin-film actuators on the basis of electro-mechanically active polymers (EAPs), with the electroactive material sandwiched between two compliant electrodes, offer a promising technology for haptic surfaces. In thin-film technology, the thickness and the number of stacked layers of the electroactive dielectric are key parameters for tuning a system. Therefore, we have experimentally investigated the influence of the thickness of a single EAP layer on the electrical and the electro-mechanical performance of the transducer. In order to achieve high electro-mechanical actuator outputs, we have employed relaxor-ferroelectric ter-fluoropolymers that can be screen-printed. By means of a model-based approach, we have also directly compared single- and multi-layer actuators, thus providing guidelines for optimized transducer configurations with respect to the system requirements of haptic applications for which the operation frequency is of particular importance. KW - haptic feedback KW - vinylidenefluoride(VDF)-based polymers KW - screen-printed KW - systems KW - thin-film actuators KW - multi-layer systems KW - equivalent-circuit KW - modelling KW - electro-mechanically active polymers Y1 - 2021 U6 - https://doi.org/10.1088/2631-8695/abd286 SN - 2631-8695 VL - 3 IS - 1 PB - Institute of Physics CY - London ER -