TY - THES A1 - Schmidt, Lena Katharina T1 - Altered hydrological and sediment dynamics in high-alpine areas – Exploring the potential of machine-learning for estimating past and future changes N2 - Climate change fundamentally transforms glaciated high-alpine regions, with well-known cryospheric and hydrological implications, such as accelerating glacier retreat, transiently increased runoff, longer snow-free periods and more frequent and intense summer rainstorms. These changes affect the availability and transport of sediments in high alpine areas by altering the interaction and intensity of different erosion processes and catchment properties. Gaining insight into the future alterations in suspended sediment transport by high alpine streams is crucial, given its wide-ranging implications, e.g. for flood damage potential, flood hazard in downstream river reaches, hydropower production, riverine ecology and water quality. However, the current understanding of how climate change will impact suspended sediment dynamics in these high alpine regions is limited. For one, this is due to the scarcity of measurement time series that are long enough to e.g. infer trends. On the other hand, it is difficult – if not impossible – to develop process-based models, due to the complexity and multitude of processes involved in high alpine sediment dynamics. Therefore, knowledge has so far been confined to conceptual models (which do not facilitate deriving concrete timings or magnitudes for individual catchments) or qualitative estimates (‘higher export in warmer years’) that may not be able to capture decreases in sediment export. Recently, machine-learning approaches have gained in popularity for modeling sediment dynamics, since their black box nature tailors them to the problem at hand, i.e. relatively well-understood input and output data, linked by very complex processes. Therefore, the overarching aim of this thesis is to estimate sediment export from the high alpine Ötztal valley in Tyrol, Austria, over decadal timescales in the past and future – i.e. timescales relevant to anthropogenic climate change. This is achieved by informing, extending, evaluating and applying a quantile regression forest (QRF) approach, i.e. a nonparametric, multivariate machine-learning technique based on random forest. The first study included in this thesis aimed to understand present sediment dynamics, i.e. in the period with available measurements (up to 15 years). To inform the modeling setup for the two subsequent studies, this study identified the most important predictors, areas within the catchments and time periods. To that end, water and sediment yields from three nested gauges in the upper Ötztal, Vent, Sölden and Tumpen (98 to almost 800 km² catchment area, 930 to 3772 m a.s.l.) were analyzed for their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. The findings suggest that the areas situated above 2500 m a.s.l., containing glacier tongues and recently deglaciated areas, play a pivotal role in sediment generation across all sub-catchments. In contrast, precipitation events were relatively unimportant (on average, 21 % of annual sediment yield was associated to precipitation events). Thus, the second and third study focused on the Vent catchment and its sub-catchment above gauge Vernagt (11.4 and 98 km², 1891 to 3772 m a.s.l.), due to their higher share of areas above 2500 m. Additionally, they included discharge, precipitation and air temperature (as well as their antecedent conditions) as predictors. The second study aimed to estimate sediment export since the 1960s/70s at gauges Vent and Vernagt. This was facilitated by the availability of long records of the predictors, discharge, precipitation and air temperature, and shorter records (four and 15 years) of turbidity-derived sediment concentrations at the two gauges. The third study aimed to estimate future sediment export until 2100, by applying the QRF models developed in the second study to pre-existing precipitation and temperature projections (EURO-CORDEX) and discharge projections (physically-based hydroclimatological and snow model AMUNDSEN) for the three representative concentration pathways RCP2.6, RCP4.5 and RCP8.5. The combined results of the second and third study show overall increasing sediment export in the past and decreasing export in the future. This suggests that peak sediment is underway or has already passed – unless precipitation changes unfold differently than represented in the projections or changes in the catchment erodibility prevail and override these trends. Despite the overall future decrease, very high sediment export is possible in response to precipitation events. This two-fold development has important implications for managing sediment, flood hazard and riverine ecology. This thesis shows that QRF can be a very useful tool to model sediment export in high-alpine areas. Several validations in the second study showed good performance of QRF and its superiority to traditional sediment rating curves – especially in periods that contained high sediment export events, which points to its ability to deal with threshold effects. A technical limitation of QRF is the inability to extrapolate beyond the range of values represented in the training data. We assessed the number and severity of such out-of-observation-range (OOOR) days in both studies, which showed that there were few OOOR days in the second study and that uncertainties associated with OOOR days were small before 2070 in the third study. As the pre-processed data and model code have been made publically available, future studies can easily test further approaches or apply QRF to further catchments. N2 - Der Klimawandel verändert vergletscherte Hochgebirgsregionen grundlegend, mit wohlbekannten Auswirkungen auf Kryosphäre und Hydrologie, wie beschleunigtem Gletscherrückgang, vorübergehend erhöhtem Abfluss, längeren schneefreien Perioden und häufigeren und intensiveren sommerlichen Starkniederschlägen. Diese Veränderungen wirken sich auf die Verfügbarkeit und den Transport von Sedimenten in hochalpinen Gebieten aus, indem sie die Interaktion und Intensität verschiedener Erosionsprozesse und Einzugsgebietseigenschaften verändern. Eine Abschätzung der zukünftigen Veränderungen des Schwebstofftransports in hochalpinen Bächen ist von entscheidender Bedeutung, da sie weitreichende Auswirkungen haben, z. B. auf das Hochwasserschadenspotenzial, die Hochwassergefahr in den Unterläufen, sowie Wasserkraftproduktion, aquatische Ökosysteme und Wasserqualität. Das derzeitige Verständnis der Auswirkungen des Klimawandels auf die Schwebstoffdynamik in diesen hochalpinen Regionen ist jedoch begrenzt. Dies liegt zum einen daran, dass es kaum ausreichend lange Messzeitreihen gibt, um z.B. Trends ableiten zu können. Zum anderen ist es aufgrund der Komplexität und der Vielzahl der Prozesse, die an der hochalpinen Sedimentdynamik beteiligt sind, schwierig - wenn nicht gar unmöglich - prozessbasierte Modelle zu entwickeln. Daher beschränkte sich das Wissen bisher auf konzeptionelle Modelle (die es nicht ermöglichen, konkrete Zeitpunkte oder Größenordnungen für einzelne Einzugsgebiete abzuleiten) oder qualitative Schätzungen ("höherer Sedimentaustrag in wärmeren Jahren"), die möglicherweise nicht in der Lage sind, Rückgänge im Sedimentaustrag abzubilden. In jüngster Zeit haben Ansätze des maschinellen Lernens für die Modellierung der Sedimentdynamik an Popularität gewonnen, da sie aufgrund ihres Black-Box-Charakters auf das vorliegende Problem zugeschnitten sind, d. h. auf relativ gut verstandene Eingangs- und Ausgangsdaten, die durch sehr komplexe Prozesse verknüpft sind. Das übergeordnete Ziel dieser Arbeit ist daher die Abschätzung des Sedimentaustrags am Beispiel des hochalpinen Ötztals in Tirol, Österreich, auf dekadischen Zeitskalen in der Vergangenheit und Zukunft – also Zeitskalen, die für den anthropogenen Klimawandel relevant sind. Dazu wird ein Quantile Regression Forest (QRF)-Ansatz, d.h. ein nichtparametrisches, multivariates maschinelles Lernverfahren auf der Basis von Random Forest, erweitert, evaluiert und angewendet. Die erste Studie im Rahmen dieser Arbeit zielte darauf ab, die "gegenwärtige" Sedimentdynamik zu verstehen, d. h. in dem Zeitraum, für den Messungen vorliegen (bis zu 15 Jahre). Um die Modellierung für die beiden folgenden Studien zu ermöglichen, wurden in dieser Studie die wichtigsten Prädiktoren, Teilgebiete des Untersuchungsgebiets und Zeiträume ermittelt. Zu diesem Zweck wurden die Wasser- und Sedimenterträge von drei verschachtelten Pegeln im oberen Ötztal, Vent, Sölden und Tumpen (98 bis fast 800 km² Einzugsgebiet, 930 bis 3772 m ü.d.M.), auf ihre räumliche Verteilung, ihre Saisonalität und deren räumlichen Unterschiede, sowie die relative Bedeutung von Niederschlagsereignissen hin untersucht. Die Ergebnisse deuten darauf hin, dass die Gebiete oberhalb von 2500 m ü. M., in denen sich Gletscherzungen und kürzlich entgletscherte Gebiete befinden, eine zentrale Rolle in der Sedimentdynamik in allen Teileinzugsgebieten spielen. Im Gegensatz dazu waren Niederschlagsereignisse relativ unbedeutend (im Durchschnitt wurden 21 % des jährlichen Austrags mit Niederschlagsereignissen in Verbindung gebracht). Daher konzentrierten sich die zweite und dritte Studie auf das Vent-Einzugsgebiet und sein Teileinzugsgebiet oberhalb des Pegels Vernagt (11,4 und 98 km², 1891 bis 3772 m ü. M.), da sie einen höheren Anteil an Gebieten oberhalb von 2500 m aufweisen. Außerdem wurden Abfluss, Niederschlag und Lufttemperatur (sowie deren Vorbedingungen) als Prädiktoren einbezogen. Die zweite Studie zielte darauf ab, den Sedimentexport seit den 1960er/70er Jahren an den Pegeln Vent und Vernagt abzuschätzen. Dies wurde durch die Verfügbarkeit langer Aufzeichnungen der Prädiktoren Abfluss, Niederschlag und Lufttemperatur sowie kürzerer Aufzeichnungen (vier und 15 Jahre) von aus Trübungsmessungen abgeleiteten Sedimentkonzentrationen an den beiden Pegeln ermöglicht. Die dritte Studie zielte darauf ab, den zukünftigen Sedimentexport bis zum Jahr 2100 abzuschätzen, indem die in der zweiten Studie entwickelten QRF-Modelle auf bereits existierende Niederschlags- und Temperaturprojektionen (EURO-CORDEX) und Abflussprojektionen (des physikalisch basierten hydroklimatologischen und Schneemodells AMUNDSEN) in den drei repräsentativen Konzentrationspfaden RCP2.6, RCP4.5 und RCP8.5 angewendet wurden. Die kombinierten Ergebnisse der zweiten und dritten Studie legen nahe, dass der Sedimentexport in der Vergangenheit insgesamt zugenommen hat und in der Zukunft abnehmen wird. Dies deutet darauf hin, dass der Höhepunkt des Sedimenteintrags erreicht ist oder bereits überschritten wurde - es sei denn, die Niederschlagsveränderungen entwickeln sich anders, als es in den Projektionen dargestellt ist, oder Veränderungen in der Erodierbarkeit des Einzugsgebiets setzen sich durch. Trotz des allgemeinen Rückgangs in der Zukunft sind sehr hohe Sedimentausträge als Reaktion auf Niederschlagsereignisse möglich. Diese zweifältige Entwicklung hat wichtige Auswirkungen auf das Sedimentmanagement, die Hochwassergefahr und die Flussökologie. Diese Arbeit zeigt, dass QRF ein sehr nützliches Instrument zur Modellierung des Sedimentexports in hochalpinen Gebieten sein kann. Mehrere Validierungen in der zweiten Studie zeigten eine gute Modell-Performance und die Überlegenheit gegenüber traditionellen Sediment-Abfluss-Beziehungen – insbesondere in Zeiträumen, in denen es zu einem hohen Sedimentexport kam, was auf die Fähigkeit von QRF hinweist, mit Schwelleneffekten umzugehen. Eine technische Einschränkung von QRF ist die Unfähigkeit, über den Bereich der in den Trainingsdaten dargestellten Werte hinaus zu extrapolieren. Die Anzahl und den Schweregrad an solchen Tagen, in denen der Wertebereich der Trainingsdaten überschritten wurde, wurde in beiden Studien untersucht. Dabei zeigte sich, dass es in der zweiten Studie nur wenige solcher Tage gab und dass die mit den Überschreitungen verbundenen Unsicherheiten in der dritten Studie vor 2070 gering waren. Da die vorverarbeiteten Daten und der Modellcode öffentlich zugänglich gemacht wurden, können künftige Studien darauf aufbauend weitere Ansätze testen oder QRF auf weitere Einzugsgebiete anwenden. KW - suspended sediment KW - glacier melt KW - climate change KW - natural hazards KW - hydrology KW - geomorphology KW - Klimawandel KW - Geomorphologie KW - Gletscherschmelze KW - Hydrologie KW - Naturgefahren KW - suspendiertes Sediment Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-623302 ER - TY - THES A1 - Reich, Marvin T1 - Advances in hydrogravimetry T1 - Weiterentwicklung der Hydrogravimetrie BT - terrestrial gravimeters as field tools for hydrological applications BT - terrestrische Gravimeter als Messgeräte für hydrologische Anwendungen N2 - The interest of the hydrological community in the gravimetric method has steadily increased within the last decade. This is reflected by numerous studies from many different groups with a broad range of approaches and foci. Many of those are traditionally rather hydrology-oriented groups who recognized gravimetry as a potential added value for their hydrological investigations. While this resulted in a variety of interesting and useful findings, contributing to extend the respective knowledge and confirming the methodological potential, on the other hand, many interesting and unresolved questions emerged. This thesis manifests efforts, analyses and solutions carried out in this regard. Addressing and evaluating many of those unresolved questions, the research contributes to advancing hydrogravimetry, the combination of gravimetric and hydrological methods, in showing how gravimeters are a highly useful tool for applied hydrological field research. In the first part of the thesis, traditional setups of stationary terrestrial superconducting gravimeters are addressed. They are commonly installed within a dedicated building, the impermeable structure of which shields the underlying soil from natural exchange of water masses (infiltration, evapotranspiration, groundwater recharge). As gravimeters are most sensitive to mass changes directly beneath the meter, this could impede their suitability for local hydrological process investigations, especially for near-surface water storage changes (WSC). By studying temporal local hydrological dynamics at a dedicated site equipped with traditional hydrological measurement devices, both below and next to the building, the impact of these absent natural dynamics on the gravity observations were quantified. A comprehensive analysis with both a data-based and model-based approach led to the development of an alternative method for dealing with this limitation. Based on determinable parameters, this approach can be transferred to a broad range of measurement sites where gravimeters are deployed in similar structures. Furthermore, the extensive considerations on this topic enabled a more profound understanding of this so called umbrella effect. The second part of the thesis is a pilot study about the field deployment of a superconducting gravimeter. A newly developed field enclosure for this gravimeter was tested in an outdoor installation adjacent to the building used to investigate the umbrella effect. Analyzing and comparing the gravity observations from both indoor and outdoor gravimeters showed performance with respect to noise and stable environmental conditions was equivalent while the sensitivity to near-surface WSC was highly increased for the field deployed instrument. Furthermore it was demonstrated that the latter setup showed gravity changes independent of the depth where mass changes occurred, given their sufficiently wide horizontal extent. As a consequence, the field setup suits monitoring of WSC for both short and longer time periods much better. Based on a coupled data-modeling approach, its gravity time series was successfully used to infer and quantify local water budget components (evapotranspiration, lateral subsurface discharge) on the daily to annual time scale. The third part of the thesis applies data from a gravimeter field deployment for applied hydrological process investigations. To this end, again at the same site, a sprinkling experiment was conducted in a 15 x 15 m area around the gravimeter. A simple hydro-gravimetric model was developed for calculating the gravity response resulting from water redistribution in the subsurface. It was found that, from a theoretical point of view, different subsurface water distribution processes (macro pore flow, preferential flow, wetting front advancement, bypass flow and perched water table rise) lead to a characteristic shape of their resulting gravity response curve. Although by using this approach it was possible to identify a dominating subsurface water distribution process for this site, some clear limitations stood out. Despite the advantage for field installations that gravimetry is a non-invasive and integral method, the problem of non-uniqueness could only be overcome by additional measurements (soil moisture, electric resistivity tomography) within a joint evaluation. Furthermore, the simple hydrological model was efficient for theoretical considerations but lacked the capability to resolve some heterogeneous spatial structures of water distribution up to a needed scale. Nevertheless, this unique setup for plot to small scale hydrological process research underlines the high potential of gravimetery and the benefit of a field deployment. The fourth and last part is dedicated to the evaluation of potential uncertainties arising from the processing of gravity observations. The gravimeter senses all mass variations in an integral way, with the gravitational attraction being directly proportional to the magnitude of the change and inversely proportional to the square of the distance of the change. Consequently, all gravity effects (for example, tides, atmosphere, non-tidal ocean loading, polar motion, global hydrology and local hydrology) are included in an aggregated manner. To isolate the signal components of interest for a particular investigation, all non-desired effects have to be removed from the observations. This process is called reduction. The large-scale effects (tides, atmosphere, non-tidal ocean loading and global hydrology) cannot be measured directly and global model data is used to describe and quantify each effect. Within the reduction process, model errors and uncertainties propagate into the residual, the result of the reduction. The focus of this part of the thesis is quantifying the resulting, propagated uncertainty for each individual correction. Different superconducting gravimeter installations were evaluated with respect to their topography, distance to the ocean and the climate regime. Furthermore, different time periods of aggregated gravity observation data were assessed, ranging from 1 hour up to 12 months. It was found that uncertainties were highest for a frequency of 6 months and smallest for hourly frequencies. Distance to the ocean influences the uncertainty of the non-tidal ocean loading component, while geographical latitude affects uncertainties of the global hydrological component. It is important to highlight that the resulting correction-induced uncertainties in the residual have the potential to mask the signal of interest, depending on the signal magnitude and its frequency. These findings can be used to assess the value of gravity data across a range of applications and geographic settings. In an overarching synthesis all results and findings are discussed with a general focus on their added value for bringing hydrogravimetric field research to a new level. The conceptual and applied methodological benefits for hydrological studies are highlighted. Within an outlook for future setups and study designs, it was once again shown what enormous potential is offered by gravimeters as hydrological field tools. N2 - Gravimetrie ist eine geophysikalische Methode, bei der Massen und deren Veränderungen beobachtet und gemessen werden. Die Messgeräte der Gravimetrie heißen Gravimeter. Wenn man diese Methode in der Erforschung von Wasser-relevanten Fragestellungen, Prozessen und Zuständen einsetzt (Hydrologie), spricht man auch von Hydrogravimetrie. Die vorliegende Dissertation beschäftigt sich damit wie diese hydrogravimetrische Methode für angewandte Forschung im Feld benutzt wird und weiterentwickelt werden kann. Zuerst wird thematisiert, wie konventionelle Aufbauten mit Gravimetern aussehen und was daran aus der hydrologischen Perspektive problematisch ist. Das Gebäude in dem sich das Gravimeter befindet, stellt eine große versiegelte Fläche dar, die es verhindert, dass in der direktem Umgebung natürliche Prozesse ablaufen. Das ist so problematisch, weil das Gravimeter besonders empfindlich auf Massänderungen in nächster räumlicher Nähe reagiert. Als Lösung wird mit Hilfe einer neuen Methode aufgezeigt, wie man unter Benutzung von traditionellen hydrologischen Messinstrumenten um das Gebäude herum diese verhinderten natürlichen Prozesse beschreiben kann. Darauf folgend wird anhand eines erfolgreich getesteten Aufbaus eines Gravimeters außerhalb von einem Gebäude, also direkt im Gelände, demonstriert, was solch eine Außeninstallation für einen großen Vorteil für die hydrologische Feldforschung mit sich bringt. Darüberhinaus wird gezeigt, dass dieser alternative Aufbau keinerlei Nachteile hinsichtlich Genauigkeit, Qualität, Rauschen oder Beherrschbarkeit von Umwelteinflüssen mit sich bringt, sondern vor allem die Empfindlichkeit für Messungen von Wassermassenänderungen in Oberflächennähe stark verbessert. Anhand eines Beregnungsexperiments auf der Fläche um dieses im Gelände installierten Gravimeters werden die Vorzüge der gravimetrischen Methode für die hydrologische Prozessforschung aufgezeigt. Verschiedene mögliche Ausbreitungen des verregneten Wassers im Untergrund können mittels dieser Methode charakterisiert und identifiziert werden. Im letzten Teil wird das Problem von Unsicherheiten besprochen, die aus der notwendigen Datenbearbeitung resultieren. Um die gravimetrischen Beobachtungen auf die Anteile zu reduzieren, die innerhalb einer Studie betrachtet werden sollen, müssen alle Komponenten die das Gravimeter misst, die aber die hydrologische Interpretation stören, beseitigt werden. Dabei handelt es sich vor allem um globale Komponenten wie Gezeiten, Luftdruckschwankungen, Gezeiten-unabhängige Meeresströmungen und globale Hydrologie. Es wird untersucht, welche Unsicherheiten bei deren Korrektur auftreten, wenn verschiedene Zeitintervalle von zu beobachtenden hydrologischen Signalen vorherrschen. Alle gewonnenen Resultate und Erfahrungen werden in einer gesamtheitlichen Betrachtung dahingehend diskutiert, wie die hydrogravimetrische Methode aufgrund dieser neuen Erkenntnisse verbessert und vorangebracht werden konnte. KW - hydrology KW - gravimetry KW - hydrogravimetry KW - fieldwork KW - hydrological modelling KW - geophysical methods KW - Feldarbeit KW - geophysikalische Methoden KW - Gravimetrie KW - Hydrogravimetrie KW - hydrologische Modellierung KW - Hydrologie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-604794 ER - TY - JOUR A1 - Marquart, Arnim A1 - Eldridge, David J. A1 - Geissler, Katja A1 - Lobas, Christoph A1 - Blaum, Niels T1 - Interconnected effects of shrubs, invertebrate-derived macropores and soil texture on water infiltration in a semi-arid savanna rangeland JF - Land degradation & development N2 - Many semi arid savannas are prone to degradation, caused for example, by overgrazing or extreme climatic events, which often lead to shrub encroachment. Overgrazing by livestock affects vegetation and infiltration processes by directly altering plant composition (selective grazing) or by impacting soil physical properties (trampling). Water infiltration is controlled by several parameters, such as macropores (created by soil-burrowing animals or plant roots) and soil texture, but their effects have mostly been studied in isolation. Here we report on a study, in which we conducted infiltration experiments to analyze the interconnected effects of invertebrate-created macropores, shrubs and soil texture (sandy soil and loamy sand) on infiltration in two Namibian rangelands. Using structural equation modeling, we found a direct positive effect of shrub size on infiltration and indirectly via invertebrate macropores on both soil types. On loamy sands this effect was even stronger, but additionally, invertebrate-created macropores became relevant as a direct driver of infiltration. Our results provide new insights into the effects of vegetation and invertebrates on infiltration under different soil textures. Pastoralists should use management strategies that maintain a heterogeneous plant community that supports soil fauna to sustain healthy soil water dynamics, particularly on soils with higher loam content. Understanding the fundamental functioning of soil water dynamics in drylands is critical because these ecosystems are water-limited and support the livelihoods of many cultures worldwide. KW - hydrology KW - infiltration KW - invertebrate macropores KW - shrub-encroachment KW - soil function KW - soil texture Y1 - 2020 U6 - https://doi.org/10.1002/ldr.3598 SN - 1085-3278 SN - 1099-145X VL - 31 IS - 16 SP - 2307 EP - 2318 PB - Wiley CY - Chichester, Sussex ER - TY - RPRT A1 - Huđek, Helena A1 - Žganec, Krešimir A1 - Pusch, Martin T. T1 - A review of hydropower dams in Southeast Europe BT - distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea T2 - Renewable & sustainable energy reviews N2 - Currently, Southeast Europe (SEE) is witnessing a boom in hydropower plant (HPP) construction, which has not even spared protected areas. As SEE includes global hotspots of aquatic biodiversity, it is expected that this boom will result in a more severe impact on biodiversity than that of other regions. A more detailed assessment of the environmental risks resulting from HPP construction would have to rely on the existence of nearby hydrological and biological monitoring stations. For this reason, we review the distribution and trends of HPPs in the area, as well as the availability of hydrological and biological monitoring data from national institutions useable for environmental impact assessment. Our analysis samples tributary rivers of the Danube in Slovenia, Croatia, Bosnia and Herzegovina, Serbia, and Montenegro, referred to hereafter as TRD rivers. Currently, 636 HPPs are operating along the course of TRD rivers, most of which are small (<1 MW). An additional 1315 HPPs are currently planned to be built, mostly in Serbia and in Bosnia and Herzegovina. As official monitoring stations near HPPs are rare, the impact of those HPPs on river flow, fish and macro-invertebrates is difficult to assess. This manuscript represents the first regional review of hydropower use and of available data sources on its environmental impact for an area outside of the Alps. We conclude that current hydrological and biological monitoring in TRD rivers is insufficient for an assessment of the ecological impacts of HPPs. This data gap also prevents an adequate assessment of the ecological impacts of planned HP projects, as well as the identification of appropriate measures to mitigate the environmental effects of existing HPPs. KW - renewable energy KW - environmental monitoring KW - water framework directive KW - environmental impact assessment KW - macroinvertebrates KW - fish KW - hydrology Y1 - 2020 U6 - https://doi.org/10.1016/j.rser.2019.109434 SN - 1364-0321 SN - 1879-0690 VL - 117 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Mooij, Wolf M. A1 - Trolle, Dennis A1 - Jeppesen, Erik A1 - Arhonditsis, George B. A1 - Belolipetsky, Pavel V. A1 - Chitamwebwa, Deonatus B. R. A1 - Degermendzhy, Andrey G. A1 - DeAngelis, Donald L. A1 - Domis, Lisette Nicole de Senerpont A1 - Downing, Andrea S. A1 - Elliott, J. Alex A1 - Fragoso Jr, Carlos Ruberto A1 - Gaedke, Ursula A1 - Genova, Svetlana N. A1 - Gulati, Ramesh D. A1 - Håkanson, Lars A1 - Hamilton, David P. A1 - Hipsey, Matthew R. A1 - ‘t Hoen, Jochem A1 - Hülsmann, Stephan A1 - Los, F. Hans A1 - Makler-Pick, Vardit A1 - Petzoldt, Thomas A1 - Prokopkin, Igor G. A1 - Rinke, Karsten A1 - Schep, Sebastiaan A. A1 - Tominaga, Koji A1 - Van Dam, Anne A. A1 - Van Nes, Egbert H. A1 - Wells, Scott A. A1 - Janse, Jan H. T1 - Challenges and opportunities for integrating lake ecosystem modelling approaches JF - Aquatic ecology N2 - A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models. KW - aquatic KW - food web dynamics KW - plankton KW - nutrients KW - spatial KW - lake KW - freshwater KW - marine KW - community KW - population KW - hydrology KW - eutrophication KW - global change KW - climate warming KW - fisheries KW - biodiversity KW - management KW - mitigation KW - adaptive processes KW - non-linear dynamics KW - analysis KW - bifurcation KW - understanding KW - prediction KW - model limitations KW - model integration Y1 - 2010 U6 - https://doi.org/10.1007/s10452-010-9339-3 SN - 1573-5125 SN - 1386-2588 VL - 44 SP - 633 EP - 667 PB - Springer Science + Business Media B.V. CY - Dordrecht ER - TY - GEN A1 - Mooij, Wolf M. A1 - Trolle, Dennis A1 - Jeppesen, Erik A1 - Arhonditsis, George B. A1 - Belolipetsky, Pavel V. A1 - Chitamwebwa, Deonatus B. R. A1 - Degermendzhy, Andrey G. A1 - DeAngelis, Donald L. A1 - Domis, Lisette Nicole de Senerpont A1 - Downing, Andrea S. A1 - Elliott, J. Alex A1 - Fragoso Jr., Carlos Ruberto A1 - Gaedke, Ursula A1 - Genova, Svetlana N. A1 - Gulati, Ramesh D. A1 - Håkanson, Lars A1 - Hamilton, David P. A1 - Hipsey, Matthew R. A1 - ‘t Hoen, Jochem A1 - Hülsmann, Stephan A1 - Los, F. Hans A1 - Makler-Pick, Vardit A1 - Petzoldt, Thomas A1 - Prokopkin, Igor G. A1 - Rinke, Karsten A1 - Schep, Sebastiaan A. A1 - Tominaga, Koji A1 - Van Dam, Anne A. A1 - Van Nes, Egbert H. A1 - Wells, Scott A. A1 - Janse, Jan H. T1 - Challenges and opportunities for integrating lake ecosystem modelling approaches T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1326 KW - aquatic KW - food web dynamics KW - plankton KW - nutrients KW - spatial KW - lake KW - freshwater KW - marine KW - community KW - population KW - hydrology KW - eutrophication KW - global change KW - climate warming KW - fisheries KW - biodiversity KW - management KW - mitigation KW - adaptive processes KW - non-linear dynamics KW - analysis KW - bifurcation KW - understanding KW - prediction KW - model limitations KW - model integration Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429839 SN - 1866-8372 IS - 1326 ER - TY - JOUR A1 - Ayzel, Georgy T1 - Deep neural networks in hydrology BT - the new generation of universal and efficient models BT - новое поколение универсальных и эффективных моделей JF - Vestnik of Saint Petersburg University. Earth Sciences N2 - For around a decade, deep learning - the sub-field of machine learning that refers to artificial neural networks comprised of many computational layers - modifies the landscape of statistical model development in many research areas, such as image classification, machine translation, and speech recognition. Geoscientific disciplines in general and the field of hydrology in particular, also do not stand aside from this movement. Recently, the proliferation of modern deep learning-based techniques and methods has been actively gaining popularity for solving a wide range of hydrological problems: modeling and forecasting of river runoff, hydrological model parameters regionalization, assessment of available water resources. identification of the main drivers of the recent change in water balance components. This growing popularity of deep neural networks is primarily due to their high universality and efficiency. The presented qualities, together with the rapidly growing amount of accumulated environmental information, as well as increasing availability of computing facilities and resources, allow us to speak about deep neural networks as a new generation of mathematical models designed to, if not to replace existing solutions, but significantly enrich the field of geophysical processes modeling. This paper provides a brief overview of the current state of the field of development and application of deep neural networks in hydrology. Also in the following study, the qualitative long-term forecast regarding the development of deep learning technology for managing the corresponding hydrological modeling challenges is provided based on the use of "Gartner Hype Curve", which in the general details describes a life cycle of modern technologies. N2 - В течение последнего десятилетия глубокое обучение - область машинного обучения, относящаяся к искусственным нейронным сетям, состоящим из множества вычислительных слоев, - изменяет ландшафт развития статистических моделей во многих областях исследований, таких как классификация изображений, машинный перевод, распознавание речи. Географические науки, а также входящая в их состав область исследования гидрологии суши, не стоят в стороне от этого движения. В последнее время применение современных технологий и методов глубокого обучения активно набирает популярность для решения широкого спектра гидрологических задач: моделирования и прогнозирования речного стока, районирования модельных параметров, оценки располагаемых водных ресурсов, идентификации факторов, влияющих на современные изменения водного режима. Такой рост популярности глубоких нейронных сетей продиктован прежде всего их высокой универсальностью и эффективностью. Представленные качества в совокупности с быстрорастущим количеством накопленной информации о состоянии окружающей среды, а также ростом доступности вычислительных средств и ресурсов, позволяют говорить о глубоких нейронных сетях как о новом поколении математических моделей, призванных если не заменить существующие решения, то значительно обогатить область моделирования геофизических процессов. В данной работе представлен краткий обзор текущего состояния области разработки и применения глубоких нейронных сетей в гидрологии. Также в работе предложен качественный долгосрочный прогноз развития технологии глубокого обучения для решения задач гидрологического моделирования на основе использования «кривой ажиотажа Гартнера», в общих чертах описывающей жизненный цикл современных технологий. T2 - Глубокие нейронные сети в гидрологии KW - deep neural networks KW - deep learning KW - machine learning KW - hydrology KW - modeling KW - глубокие нейронные сети KW - глубокое обучение KW - машинное обучение KW - гидрология KW - моделирование Y1 - 2021 U6 - https://doi.org/10.21638/spbu07.2021.101 SN - 2541-9668 SN - 2587-585X VL - 66 IS - 1 SP - 5 EP - 18 PB - Univ. Press CY - St. Petersburg ER - TY - THES A1 - Kemter, Matthias T1 - River floods in a changing world T1 - Flusshochwasser in einer sich ändernden Welt N2 - River floods are among the most devastating natural hazards worldwide. As their generation is highly dependent on climatic conditions, their magnitude and frequency are projected to be affected by future climate change. Therefore, it is crucial to study the ways in which a changing climate will, and already has, influenced flood generation, and thereby flood hazard. Additionally, it is important to understand how other human influences - specifically altered land cover - affect flood hazard at the catchment scale. The ways in which flood generation is influenced by climatic and land cover conditions differ substantially in different regions. The spatial variability of these effects needs to be taken into account by using consistent datasets across large scales as well as applying methods that can reflect this heterogeneity. Therefore, in the first study of this cumulative thesis a complex network approach is used to find 10 clusters of similar flood behavior among 4390 catchments in the conterminous United States. By using a consistent set of 31 hydro-climatological and land cover variables, and training a separate Random Forest model for each of the clusters, the regional controls on flood magnitude trends between 1960-2010 are detected. It is shown that changes in rainfall are the most important drivers of these trends, while they are regionally controlled by land cover conditions. While climate change is most commonly associated with flood magnitude trends, it has been shown to also influence flood timing. This can lead to trends in the size of the area across which floods occur simultaneously, the flood synchrony scale. The second study is an analysis of data from 3872 European streamflow gauges and shows that flood synchrony scales have increased in Western Europe and decreased in Eastern Europe. These changes are attributed to changes in flood generation, especially a decreasing relevance of snowmelt. Additionally, the analysis shows that both the absolute values and the trends of flood magnitudes and flood synchrony scales are positively correlated. If these trends persist in the future and are not accounted for, the combined increases of flood magnitudes and flood synchrony scales can exceed the capacities of disaster relief organizations and insurers. Hazard cascades are an additional way through which climate change can influence different aspects of flood hazard. The 2019/2020 wildfires in Australia, which were preceded by an unprecedented drought and extinguished by extreme rainfall that led to local flooding, present an opportunity to study the effects of multiple preceding hazards on flood hazard. All these hazards are individually affected by climate change, additionally complicating the interactions within the cascade. By estimating and analyzing the burn severity, rainfall magnitude, soil erosion and stream turbidity in differently affected tributaries of the Manning River catchment, the third study shows that even low magnitude floods can pose a substantial hazard within a cascade. This thesis shows that humanity is affecting flood hazard in multiple ways with spatially and temporarily varying consequences, many of which were previously neglected (e.g. flood synchrony scale, hazard cascades). To allow for informed decision making in risk management and climate change adaptation, it will be crucial to study these aspects across the globe and to project their trajectories into the future. The presented methods can depict the complex interactions of different flood drivers and their spatial variability, providing a basis for the assessment of future flood hazard changes. The role of land cover should be considered more in future flood risk modelling and management studies, while holistic, transferable frameworks for hazard cascade assessment will need to be designed. N2 - Flusshochwasser gehören zu den verheerendsten Naturkatastrophen weltweit. Ihre Entstehung hängt von klimatischen Bedingungen ab, weshalb vorhergesagt wird, dass sich ihre Magnituden und Häufigkeit durch den Klimawandel ändern werden. Daher ist es notwendig zu untersuchen, auf welche Art sich ein verändertes Klima - auch im Vergleich mit Effekten durch Landbedeckungsänderungen - auf Hochwasserentstehung und -gefahr auswirken könnte und das bereits getan hat. Diese kumulative Arbeit beleuchtet drei Teilaspekte dieses Themas. In der ersten Studie werden mittels maschinellen Lernens die wichtigsten Variablen entdeckt und untersucht, die die Änderungen von Hochwassermagnituden in 4390 Einzugsgebieten in den USA von 1960-2010 kontrolliert haben. Es wird gezeigt, dass Änderungen der Regenmengen der entscheidende Faktor waren, während Landnutzung regional von großer Bedeutung war. Die zweite Studie untersucht von 1960-2010 Änderungen in der Distanz innerhalb welcher Hochwasser in verschiedenen Flüssen gleichzeitig auftreten. Daten von 3872 europäischen Flusspegeln zeigen, dass sich die Fläche der gleichzeitigen Überflutung in Westeuropa vergrößert und in Osteuropa verkleinert hat, was auf abnehmende Relevanz der Schneeschmelze bei der Hochwasserentstehung zurückzuführen ist. Die dritte Studie behandelt die Auswirkungen kaskadierender Naturkatastrophen auf Hochwasser am Beispiel der australischen Waldbrände 2019/2020. Die Untersuchung der verschieden stark betroffenen Nebenflüsse des Manning River zeigt, dass in einer Naturgefahrenkaskade selbst gewöhnliche Hochwasser substantielle Auswirkungen haben können. Diese Arbeit zeigt, dass die Menschheit Hochwassergefahren auf verschiedene Arten und mit räumlich sowie zeitlich variablen Resultaten beeinflusst. Diese Aspekte müssen zukünftig global näher untersucht und ihre Entwicklung für die Zukunft modelliert werden, um fundierte Entscheidungen in Hochwasserschutz treffen zu können. Für Hochwassermagnituden und die Fläche gleichzeitiger Überflutung können hierfür die präsentierten Methoden adaptiert werden. KW - hydrology KW - climate change KW - flood KW - Hydrologie KW - Klimawandel KW - Hochwasser Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558564 ER - TY - JOUR A1 - Coch, Caroline A1 - Lamoureux, Scott F. A1 - Knoblauch, Christian A1 - Eischeid, Isabell A1 - Fritz, Michael A1 - Obu, Jaroslav A1 - Lantuit, Hugues T1 - Summer rainfall dissolved organic carbon, solute, and sediment fluxes in a small Arctic coastal catchment on Herschel Island (Yukon Territory, Canada) JF - Artic science N2 - Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could bemobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014-2016, mean dissolved organic matter flux over 17 days amounted to 82.7 +/- 30.7 kg km(-2) and mean total dissolved solids flux to 5252 +/- 1224 kg km(-2). Flux of suspended sediment was 7245 kg km(-2) in 2015, and 369 kg km(-2) in 2016. We found that 2.0% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes. KW - permafrost KW - hydrology KW - lateral fluxes KW - hysteresis KW - climate change Y1 - 2018 U6 - https://doi.org/10.1139/as-2018-0010 SN - 2368-7460 VL - 4 IS - 4 SP - 750 EP - 780 PB - Canadian science publishing CY - Ottawa ER - TY - JOUR A1 - Muster, Sina A1 - Riley, William J. A1 - Roth, Kurt A1 - Langer, Moritz A1 - Aleina, Fabio Cresto A1 - Koven, Charles D. A1 - Lange, Stephan A1 - Bartsch, Annett A1 - Grosse, Guido A1 - Wilson, Cathy J. A1 - Jones, Benjamin M. A1 - Boike, Julia T1 - Size distributions of arctic waterbodies reveal consistent relations in their statistical moments in space and time JF - Frontiers in Earth Science N2 - Arctic lowlands are characterized by large numbers of small waterbodies, which are known to affect surface energy budgets and the global carbon cycle. Statistical analysis of their size distributions has been hindered by the shortage of observations at sufficiently high spatial resolutions. This situation has now changed with the high-resolution (<5 m) circum-Arctic Permafrost Region Pond and Lake (PeRL) database recently becoming available. We have used this database to make the first consistent, high-resolution estimation of Arctic waterbody size distributions, with surface areas ranging from 0.0001 km(2) (100 m(2)) to 1 km(2). We found that the size distributions varied greatly across the thirty study regions investigated and that there was no single universal size distribution function (including power-law distribution functions) appropriate across all of the study regions. We did, however, find close relationships between the statistical moments (mean, variance, and skewness) of the waterbody size distributions from different study regions. Specifically, we found that the spatial variance increased linearly with mean waterbody size (R-2 = 0.97, p < 2.2e-16) and that the skewness decreased approximately hyperbolically. We have demonstrated that these relationships (1) hold across the 30 Arctic study regions covering a variety of (bio)climatic and permafrost zones, (2) hold over time in two of these study regions for which multi-decadal satellite imagery is available, and (3) can be reproduced by simulating rising water levels in a high-resolution digital elevation model. The consistent spatial and temporal relationships between the statistical moments of the waterbody size distributions underscore the dominance of topographic controls in lowland permafrost areas. These results provide motivation for further analyses of the factors involved in waterbody development and spatial distribution and for investigations into the possibility of using statistical moments to predict future hydrologic dynamics in the Arctic. KW - permafrost KW - hydrology KW - waterbodies KW - size distribution KW - thermokarst KW - statistical moments KW - ponds KW - lakes Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00005 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER -