TY - JOUR A1 - Monreal-Ibero, Ana A1 - Weilbacher, Peter Michael A1 - Wendt, Martin T1 - Diffuse interstellar bands lambda 5780 and lambda 5797 in the Antennae Galaxy as seen by MUSE JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Diffuse interstellar bands (DIBs) are faint spectral absorption features of unknown origin. Research on DIBs beyond the Local Group is very limited and will surely blossom in the era of the Extremely Large Telescopes. However, we can already start paving the way. One possibility that needs to be explored is the use of high-sensitivity integral field spectrographs. Aims. Our goals are twofold. First, we aim to derive reliable mapping of at least one DIB in a galaxy outside the Local Group. Second, we want to explore the relation between DIBs and other properties of the interstellar medium (ISM) in the galaxy. Methods. We use Multi Unit Spectroscopic Explorer (MUSE) data for the Antennae Galaxy, the closest major galaxy merger. High signal-to-noise spectra were created by co-adding the signal of many spatial elements with the Voronoi binning technique. The emission of the underlying stellar population was modelled and substracted with the STARLIGHT spectral synthesis code. Flux and equivalent width of the features of interest were measured by means of fitting to Gaussian functions. Conclusions. The results illustrate the enormous potential of integral field spectrographs for extragalactic DIB research. KW - dust, extinction KW - ISM: lines and bands KW - galaxies: ISM KW - galaxies: individual: Antennae Galaxy KW - galaxies: interactions KW - ISM: structure Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201732178 SN - 1432-0746 VL - 615 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Wendt, Martin A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Monreal-Ibero, Ana A1 - Richter, Philipp A1 - Brinchmann, Jarle A1 - Dreizler, Stefan A1 - Weilbacher, Peter Michael A1 - Wisotzki, Lutz T1 - Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy A pilot study based on globular cluster NGC 6397 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims. We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods. This analysis utilized the fitting residuals of individual stellar spectra of NGC6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results. This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na-I and K-I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines. KW - techniques: imaging spectroscopy KW - globular clusters: individual: NGC 6397 KW - dust, extinction KW - ISM: structure KW - ISM: lines and bands Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629816 SN - 1432-0746 VL - 607 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Monreal-Ibero, Ana A1 - Weilbacher, Peter Michael A1 - Wendt, Martin A1 - Selman, Fernando A1 - Lallement, Rosine A1 - Brinchmann, Jarle A1 - Kamann, Sebastian A1 - Sandin, Christer T1 - Towards DIB mapping in galaxies beyond 100 Mpc A radial profile of the lambda 5780.5 diffuse interstellar band in AM1353-272 B JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Diffuse interstellar bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of the interstellar medium (ISM). Research of DIBs outside the Milky Way is currently very limited. In particular, spatially resolved investigations of DIBs outside of the Local Group are, to our knowledge, inexistent. Aims. In this contribution, we explore the capability of the high-sensitivity integral field spectrograph, MUSE, as a tool for mapping diffuse interstellar bands at distances larger than 100 Mpc. Methods. We used MUSE commissioning data for AM1353-272 B, the member with the highest extinction of the Dentist's Chair, an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. Results. We derived decreasing radial profiles for the equivalent width of the lambda 5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of similar to 4.6 kpc from the centre of the galaxy. The interstellar extinction as derived from the Ha/H beta line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM1353-272 B, consistent with the currently existing global trend between these quantities when using measurements for Galactic and extragalactic sightlines. Conclusions. It seems feasible to map the DIB strength in the Local Universe, which has up to now only been performed for the Milky Way. This offers a new approach to studying the relationship between DIBs and other characteristics and species of the ISM in addition to using galaxies in the Local Group or sightlines towards very bright targets outside the Local Group. KW - dust, extinction KW - ISM: lines and bands KW - galaxies: ISM KW - galaxies: individual: AM1353-272 B Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201525854 SN - 0004-6361 SN - 1432-0746 VL - 576 PB - EDP Sciences CY - Les Ulis ER -