TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Rudolph, Tobias A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Polymeric microcuboids programmable for temperature-memory JF - Macromolecular materials and engineering N2 - Microobjects with programmable mechanical functionality are highly desirable for the creation of flexible electronics, sensors, and microfluidic systems, where fabrication/programming and quantification methods are required to fully control and implement dynamic physical behavior. Here, programmable microcuboids with defined geometries are prepared by a template-based method from crosslinked poly[ethylene-co-(vinyl acetate)] elastomers. These microobjects could be programmed to exhibit a temperature-memory effect or a shape-memory polymer actuation capability. Switching temperaturesT(sw)during shape recovery of 55 +/- 2, 68 +/- 2, 80 +/- 2, and 86 +/- 2 degrees C are achieved by tuning programming temperatures to 55, 70, 85, and 100 degrees C, respectively. Actuation is achieved with a reversible strain of 2.9 +/- 0.2% to 6.7 +/- 0.1%, whereby greater compression ratios and higher separation temperatures induce a more pronounced actuation. Micro-geometry change is quantified using optical microscopy and atomic force microscopy. The realization and quantification of microparticles, capable of a tunable temperature responsive shape-change or reversible actuation, represent a key development in the creation of soft microscale devices for drug delivery or microrobotics. KW - actuation KW - atomic force microscopy KW - biomaterials KW - microparticles KW - shape-memory polymers Y1 - 2020 U6 - https://doi.org/10.1002/mame.202000333 SN - 1438-7492 SN - 1439-2054 VL - 305 IS - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhang, Quanchao A1 - Sauter, Tilman A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Shape-Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying JF - Macromolecular materials and engineering N2 - Multifunctional thermo-responsive and degradable microparticles exhibiting a shapememory effect (SME) have attracted widespread interest in biomedicine as switchable delivery vehicles or microactuators. In this work almost spherical solid microparticles with an average diameter of 3.9 +/- 0.9 mm are prepared via electrospraying of a copolyetheresterurethane named PDC, which is composed of crystallizable oligo(p-dioxanone) (OPDO) hard and oligo(e-caprolactone) (OCL) switching segments. The PDC microparticles are programmed via compression at different pressures and their shapememory capability is explored by off-line and online heating experiments. When a low programming pressure of 0.2 MPa is applied a pronounced thermally-induced shape-memory effect is achieved with a shape recovery ratio about 80%, while a high programming pressure of 100 MPa resulted in a weak shape-memory performance. Finally, it is demonstrated that an array of PDC microparticles deposited on a polypropylene (PP) substrate can be successfully programmed into a smart temporary film, which disintegrates upon heating to 60 degrees C. KW - biomaterials KW - microparticles KW - processing KW - stimuli-sensitive polymers KW - shape-memory effect Y1 - 2015 U6 - https://doi.org/10.1002/mame.201400267 SN - 1438-7492 SN - 1439-2054 VL - 300 IS - 5 SP - 522 EP - 530 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sauter, Tilman A1 - Geiger, Brett A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Encasement of metallic cardiovascular stents with endothelial cell-selective copolyetheresterurethane microfibers JF - Polymers for advanced technologies N2 - Cardiovascular metallic stents established in clinical application are typically coated by a thin polymeric layer on the stent struts to improve hemocompatibility, whereby often a drug is added to the coating to inhibit neointimal hyperplasia. Besides such thin film coatings recently nano/microfiber coated stents are investigated, whereby the fibrous coating was applied circumferential on stents. Here, we explored whether a thin fibrous encasement of metallic stents with preferentially longitudinal aligned fibers and different local fiber densities can be achieved by electrospinning. An elastic degradable copolyetheresterurethane, which is reported to selectively enhance the adhesion of endothelial cells, while simultaneously rejecting smooth muscle cells, was utilized for stent coating. The fibrous stent encasements were microscopically assessed regarding their single fiber diameters, fiber covered area and fiber alignment at three characteristic stent regions before and after stent expansion. Stent coatings with thicknesses in the range from 30 to 50 mu m were achieved via electrospinning with 1,1,1,3,3,3-hexafluoro-2-propanol (HFP)-based polymer solution, while a mixture of HFP and formic acid as solvent resulted in encasements with a thickness below 5 mu m comprising submicron sized single fibers. All polymeric encasements were mechanically stable during expansion, whereby the fibers deposited on the struts remained their position. The observed changes in fiber density and diameter indicated diverse local deformation mechanisms of the microfibers at the different regions between the struts. Based on these results it can be anticipated that the presented fibrous encasement of stents might be a promising alternative to stents with polymeric strut coatings releasing anti-proliferative drugs. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - multifunctional polymers KW - stent coatings KW - electrospinning KW - biomaterials KW - degradable polymers Y1 - 2015 U6 - https://doi.org/10.1002/pat.3583 SN - 1042-7147 SN - 1099-1581 VL - 26 IS - 10 SP - 1209 EP - 1216 PB - Wiley-Blackwell CY - Hoboken ER -