TY - GEN A1 - Arntz, Fabian A1 - Mkaouer, Bessem A1 - Markov, Adrian A1 - Schoenfeld, Brad A1 - Moran, Jason A1 - Ramirez-Campillo, Rodrigo A1 - Behrens, Martin A1 - Baumert, Philipp A1 - Erskine, Robert M. A1 - Hauser, Lukas A1 - Chaabene, Helmi T1 - Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals. Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021. Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1–15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95% CIs = 0.23–0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95% CIs = 0.18–0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95% CIs = 0.16–0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95% CIs = 0.66–0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95% CIs = −0.25–1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95% CIs = 0.16–0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95% CIs = 0.59–0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95% CIs = 0.2041–0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = −0.0133 to 0.0433 (95% CIs = −0.0387 to 0.1215); p = 0.101–0.751]. Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 787 KW - muscle tissue KW - muscle strength KW - stretch shortening cycle exercise KW - muscle growth KW - human physical conditioning KW - youth sports KW - aged Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563165 SN - 1866-8364 SP - 1 EP - 17 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Arntz, Fabian A1 - Mkaouer, Bessem A1 - Markov, Adrian A1 - Schoenfeld, Brad A1 - Moran, Jason A1 - Ramirez-Campillo, Rodrigo A1 - Behrens, Martin A1 - Baumert, Philipp A1 - Erskine, Robert M. A1 - Hauser, Lukas A1 - Chaabene, Helmi T1 - Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis JF - Frontiers in Physiology N2 - Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals. Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021. Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1–15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95% CIs = 0.23–0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95% CIs = 0.18–0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95% CIs = 0.16–0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95% CIs = 0.66–0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95% CIs = −0.25–1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95% CIs = 0.16–0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95% CIs = 0.59–0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95% CIs = 0.2041–0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = −0.0133 to 0.0433 (95% CIs = −0.0387 to 0.1215); p = 0.101–0.751]. Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations. KW - muscle tissue KW - muscle strength KW - stretch shortening cycle exercise KW - muscle growth KW - human physical conditioning KW - youth sports KW - aged Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.888464 SN - 1664-042X VL - 13 SP - 1 EP - 17 PB - Frontiers CY - Lausanne, Schweiz ET - 888464 ER - TY - GEN A1 - Gäbler, Martijn A1 - Berberyan, Hermine S. A1 - Prieske, Olaf A1 - Elferink-Gemser, Marije Titia A1 - Hortobagyi, Tibor A1 - Warnke, Torsten A1 - Granacher, Urs T1 - Strength Training Intensity and Volume Affect Performance of Young Kayakers/Canoeists T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Purpose: The aim of this study was to compare the effects of moderate intensity, low volume (MILV) vs. low intensity, high volume (LIHV) strength training on sport-specific performance, measures of muscular fitness, and skeletal muscle mass in young kayakers and canoeists. Methods: Semi-elite young kayakers and canoeists (N = 40, 13 ± 0.8 years, 11 girls) performed either MILV (70–80% 1-RM, 6–12 repetitions per set) or LIHV (30–40% 1-RM, 60–120 repetitions per set) strength training for one season. Linear mixed-effects models were used to compare effects of training condition on changes over time in 250 and 2,000 m time trials, handgrip strength, underhand shot throw, average bench pull power over 2 min, and skeletal muscle mass. Both between- and within-subject designs were used for analysis. An alpha of 0.05 was used to determine statistical significance. Results: Between- and within-subject analyses showed that monthly changes were greater in LIHV vs. MILV for the 2,000 m time trial (between: 9.16 s, SE = 2.70, p < 0.01; within: 2,000 m: 13.90 s, SE = 5.02, p = 0.01) and bench pull average power (between: 0.021 W⋅kg–1, SE = 0.008, p = 0.02; within: 0.010 W⋅kg–1, SE = 0.009, p > 0.05). Training conditions did not affect other outcomes. Conclusion: Young sprint kayakers and canoeists benefit from LIHV more than MILV strength training in terms of 2,000 m performance and muscular endurance (i.e., 2 min bench pull power). T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 744 KW - youth sports KW - water sports KW - exercise test KW - athletic performance KW - anthropometry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542283 SN - 1866-8364 SP - 1 EP - 10 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Gäbler, Martijn A1 - Berberyan, Hermine S. A1 - Prieske, Olaf A1 - Elferink-Gemser, Marije Titia A1 - Hortobágyi, Tibor A1 - Warnke, Torsten A1 - Granacher, Urs T1 - Strength Training Intensity and Volume Affect Performance of Young Kayakers/Canoeists JF - Frontiers in physiology N2 - Purpose: The aim of this study was to compare the effects of moderate intensity, low volume (MILV) vs. low intensity, high volume (LIHV) strength training on sport-specific performance, measures of muscular fitness, and skeletal muscle mass in young kayakers and canoeists. Methods: Semi-elite young kayakers and canoeists (N = 40, 13 ± 0.8 years, 11 girls) performed either MILV (70–80% 1-RM, 6–12 repetitions per set) or LIHV (30–40% 1-RM, 60–120 repetitions per set) strength training for one season. Linear mixed-effects models were used to compare effects of training condition on changes over time in 250 and 2,000 m time trials, handgrip strength, underhand shot throw, average bench pull power over 2 min, and skeletal muscle mass. Both between- and within-subject designs were used for analysis. An alpha of 0.05 was used to determine statistical significance. Results: Between- and within-subject analyses showed that monthly changes were greater in LIHV vs. MILV for the 2,000 m time trial (between: 9.16 s, SE = 2.70, p < 0.01; within: 2,000 m: 13.90 s, SE = 5.02, p = 0.01) and bench pull average power (between: 0.021 W⋅kg–1, SE = 0.008, p = 0.02; within: 0.010 W⋅kg–1, SE = 0.009, p > 0.05). Training conditions did not affect other outcomes. Conclusion: Young sprint kayakers and canoeists benefit from LIHV more than MILV strength training in terms of 2,000 m performance and muscular endurance (i.e., 2 min bench pull power). KW - youth sports KW - water sports KW - exercise test KW - athletic performance KW - anthropometry Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.686744 SN - 1664-042X VL - 12 SP - 1 EP - 10 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Gaebler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The effects of concurrent strength and endurance training on physical fitness and athletic performance in Youth BT - a systematic review and Meta-Analysis JF - Frontiers in physiology N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6-11 years, boys age 6-13 years) or adolescents (girls age 12-18 years, boys age 14-18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power-(e.g., jump height), endurance-(e.g., peak. VO2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.01057 SN - 1664-042X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Gäbler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The Effects of Concurrent Strength and Endurance Training on Physical Fitness and Athletic Performance in Youth BT - A Systematic Review and Meta-Analysis T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6–11 years, boys age 6–13 years) or adolescents (girls age 12–18 years, boys age 14–18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power—(e.g., jump height), endurance—(e.g., peak V°O2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 471 KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417683 IS - 471 ER - TY - JOUR A1 - Gäbler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The Effects of Concurrent Strength and Endurance Training on Physical Fitness and Athletic Performance in Youth BT - A Systematic Review and Meta-Analysis JF - Frontiers in Physiology N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6–11 years, boys age 6–13 years) or adolescents (girls age 12–18 years, boys age 14–18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power—(e.g., jump height), endurance—(e.g., peak V°O2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.01057 SN - 1664-042X VL - 9 SP - 1 EP - 13 PB - Frontiers Research Foundation CY - Lausanne ER -