TY - JOUR A1 - Marino, Raffaella Anna A1 - Cantalupo, Sebastiano A1 - Lilly, Simon J. A1 - Gallego, Sofia G. A1 - Straka, Lorrie A. A1 - Borisova, Elena A1 - Pezzulli, Gabriele A1 - Bacon, Roland A1 - Brinchmann, Jarle A1 - Carollo, C. Marcella A1 - Caruana, Joseph A1 - Conseil, Simon A1 - Contini, Thierry A1 - Diener, Catrina A1 - Finley, Hayley A1 - Inami, Hanae A1 - Leclercq, Floriane A1 - Muzahid, Sowgat A1 - Richard, Johan A1 - Schaye, Joop A1 - Wendt, Martin A1 - Wisotzki, Lutz T1 - Dark Galaxy Candidates at Redshift similar to 3.5 Detected with MUSE JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a "dark galaxy" phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Ly alpha sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Ly alpha luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 angstrom that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z approximate to 2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t - 60 Myr on the quasar lifetime. KW - galaxies: formation KW - galaxies: high-redshift KW - galaxies: star formation KW - intergalactic medium KW - quasars: emission lines KW - quasars: general Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aab6aa SN - 0004-637X SN - 1538-4357 VL - 859 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Zabl, Johannes A1 - Bouche, Nicolas F. A1 - Schroetter, Ilane A1 - Wendt, Martin A1 - Finley, Hayley A1 - Schaye, Joop A1 - Conseil, Simon A1 - Contini, Thierry A1 - Marino, Raffaella Anna A1 - Mitchell, Peter A1 - Muzahid, Sowgat A1 - Pezzulli, Gabriele A1 - Wisotzki, Lutz T1 - MusE GAs FLOw and Wind (MEGAFLOW) BT - II. A study of gas accretion around z approximate to 1 star-forming galaxies with background quasars JF - Monthly notices of the Royal Astronomical Society N2 - We use the MusE GAs FLOw and Wind (MEGAFLOW) survey to study the kinematics of extended disc-like structures of cold gas around z approximate to 1 star-forming galaxies. The combination of VLT/MUSE and VLT/UVES observations allows us to connect the kinematics of the gas measured through MgII quasar absorption spectroscopy to the kinematics and orientation of the associated galaxies constrained through integral field spectroscopy. Confirming previous results, we find that the galaxy-absorber pairs of the MEGAFLOW survey follow a strong bimodal distribution, consistent with a picture of MgII absorption being predominantly present in outflow cones and extended disc-like structures. This allows us to select a bona-fide sample of galaxy-absorber pairs probing these discs for impact paramometers of 10-70 kpc. We test the hypothesis that the disc-like gas is co-rotating with the galaxy discs, and find that for seven out of nine pairs the absorption velocity shares the sign of the disc velocity, disfavouring random orbits. We further show that the data are roughly consistent with inflow velocities and angular momenta predicted by simulations, and that the corresponding mass accretion rates are sufficient to balance the star formation rates. KW - galaxies: evolution KW - galaxies: formation KW - galaxies: haloes KW - galaxies: kinematics and dynamics KW - quasars: absorption lines Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz392 SN - 0035-8711 SN - 1365-2966 VL - 485 IS - 2 SP - 1961 EP - 1980 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Finley, Hayley A1 - Bouche, Nicolas A1 - Contini, Thierry A1 - Epinat, Benoit A1 - Bacon, Roland A1 - Brinchmann, Jarle A1 - Cantalupo, Sebastiano A1 - Erroz-Ferrer, Santiago A1 - Marino, Aella Anna A1 - Maseda, Michael A1 - Richard, Johan A1 - Schroetter, Ilane A1 - Verhamme, Anne A1 - Weilbacher, Peter Michael A1 - Wendt, Martin A1 - Wisotzki, Lutz T1 - Galactic winds with MUSE: A direct detection of Fe II* emission from a z=1.29 galaxy JF - Astronomy and astrophysics : an international weekly journal N2 - Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M-star = 8 x 10(9) M-circle dot, star formation rate SFR = 77(-25)(+40) M-circle dot yr(-1), and star formation rate surface brightness Sigma(SFR) = 1.6 M-circle dot kpc(-2) within the [OII] lambda lambda 3727, 3729 half-light radius R-1/2, ([OII]) = 2.76 +/- 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s(-1), we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at lambda 2365, lambda 2396, lambda 2612, and lambda 2626, at 1.2-2.4-1.5-2.7 x 10-(18) erg s(-1) cm(-2) respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R-1/2, (Fe II*) = 4.1 +/- 0.4 kpc, is 70% larger than the stellar continuum (R-1/2,(star) similar or equal to 2.34 +/- 0.17) or the [O II] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s(-1), which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p - v diagram along that axis. These features are consistent with a bi-conical outflow. KW - galaxies: evolution KW - galaxies: formation KW - galaxies: starburst KW - galaxies: ISM KW - ISM: jets and outflows KW - ultraviolet: ISM Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730428 SN - 1432-0746 VL - 605 PB - EDP Sciences CY - Les Ulis ER -