TY - THES A1 - Ihlenburg, Ramona T1 - Sulfobetainhydrogele mit biomedizinischem Anwendungspotential und deren Netzwerkcharakterisierung im Gleichgewichtsquellzustand N2 - In dieser Dissertation konnten erfolgreich mechanisch stabile Hydrogele über eine freie radikalische Polymerisation (FRP) in Wasser synthetisiert werden. Dabei diente vor allem das Sulfobetain SPE als Monomer. Dieses wurde mit dem über eine nukleophile Substitution erster bzw. zweiter Ordnung hergestellten Vernetzer TMBEMPA/Br umgesetzt. Die entstandenen Netzwerke wurden im Gleichgewichtsquellzustand im Wesentlichen mittels Niederfeld-Kernresonanzspektroskopie, Röntgenkleinwinkelstreuung (SAXS), Rasterelektronenmikroskopie mit Tieftemperaturtechnik (Kryo-REM), dynamisch-mechanische Analyse (DMA), Rheologie, thermogravimetrische Analyse (TGA) und dynamische Differenzkalorimetrie (DSC) analysiert. Das hierarchisch aufgebaute Netzwerk wurde anschließend für die matrixgesteuerten Mineralisation von Calciumphosphat und –carbonat genutzt. Über das alternierende Eintauchverfahren (engl. „alternate soaking method“) und der Variation von Mineralisationsparametern, wie pH-Wert, Konzentration c und Temperatur T konnten dann verschiedene Modifikationen des Calciumphosphats generiert werden. Das entstandene Hybridmaterial wurde qualitativ mittels Röntgenpulverdiffraktometrie (XRD), abgeschwächte Totalreflexion–fouriertransformierte Infrarot Spektroskopie (ATR-FTIR), Raman-Spektroskopie, Rasterelektronenmikroskopie (REM) mit energiedispersiver Röntgenspektroskopie (EDXS) und optischer Mikroskopie (OM) als auch quantitative mittels Gravimetrie und TGA analysiert. Für die potentielle Verwendung in der Medizintechnik, z.B. als Implantatmaterial, ist die grundlegende Einschätzung der Wechselwirkung zwischen Hydrogel bzw. Hybridmaterial und verschiedener Zelltypen unerlässlich. Dazu wurden verschiedene Zelltypen, wie Einzeller, Bakterien und adulte Stammzellen verwendet. Die Wechselwirkung mit Peptidsequenzen von Phagen komplettiert das biologische Unterkapitel. Hydrogele sind mannigfaltig einsetzbar. Diese Arbeit fasst daher weitere Projektperspektiven, auch außerhalb des biomedizinischem Anwendungsspektrums, auf. So konnten erste Ansätze zur serienmäßige bzw. maßgeschneiderte Produktion über das „Inkjet“ Verfahren erreicht werden. Um dies ermöglichen zu können wurden erfolgreich weitere Synthesestrategien, wie die Photopolymerisation und die redoxinitiierte Polymerisation, ausgenutzt. Auch die Eignung als Filtermaterial oder Superabsorber wurde analysiert. N2 - In this current thesis, mechanically stable hydrogels were successfully synthesized via free radical polymerization (FRP) in water. In particular, the sulfobetaine SPE served as a monomer. This was reacted with the crosslinker TMBEMPA/Br prepared via first- and second-order nucleophilic substitution, respectively. The resulting networks were analyzed in the equilibrium swelling state mainly by low-field nuclear magnetic resonance spectroscopy, small-angle X-ray scattering (SAXS), scanning electron microscopy with cryogenic technique (cryo-REM), dynamic mechanical analysis (DMA), rheology, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The hierarchical network was then used for matrix-controlled mineralization of calcium phosphate and carbonate. Using the alternate soaking method and varying mineralization parameters such as pH, concentration c and temperature T, different modifications of calcium phosphate could be generated. The resulting hybrid material was analyzed qualitatively by X-ray powder diffraction (XRD), attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDXS) and optical microscopy (OM) as well as quantitatively by gravimetry and TGA. For the potential use in medical technology, e.g. as implant material, the basic assessment of the interaction between hydrogel or hybrid material and different cell types is essential. For this purpose, different cell types, such as amoeba, bacteria and adult stem cells, were used. The interaction with peptide sequences of phages completes the biological subchapter. Hydrogels can be used in many different ways. This thesis therefore includes further project perspectives, also outside the biomedical application spectrum. Thus, first approaches to serial or customized production via the "inkjet" process could be achieved. To make this possible, other synthesis strategies such as photopolymerization and redox-initiated polymerization were successfully exploited. The suitability as filter material or superabsorbent was also analyzed. KW - Hydrogel KW - Calciumphosphat KW - Mineralisation KW - hydrogel KW - calcium phosphate KW - mineralization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-607093 ER - TY - JOUR A1 - Piluso, Susanna A1 - Vukicevie, Radovan A1 - Nöchel, Ulrich A1 - Braune, Steffen A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation JF - European polymer journal N2 - While click chemistry reactions for biopolymer network formation are attractive as the defined reactions may allow good control of the network formation and enable subsequent functionalization, tailoring of gelatin network properties over a wide range of mechanical properties has yet to be shown. Here, it is demonstrated that copper-catalyzed alkyne-azide cycloaddition of alkyne functionalized gelatin with diazides gave hydrogel networks with properties tailorable by the ratio of diazide to gelatin and diazide rigidity. 4,4′-diazido-2,2′-stilbenedisulfonic acid, which has been used as rigid crosslinker, yielded hydrogels with Young’s moduli E of 50–390 kPa and swelling degrees Q of 150–250 vol.%, while the more flexible 1,8-diazidooctane resulted in hydrogels with E = 125–280 kPa and Q = 225–470 vol.%. Storage moduli could be varied by two orders of magnitude (G′ = 100–20,000 Pa). An indirect cytotoxicity test did not show cytotoxic properties. Even when employing 1:1 ratios of alkyne and azide moieties, the hydrogels were shown to contain both, unreacted alkyne groups on the gelatin backbone as well as dangling chains carrying azide groups as shown by reaction with functionalized fluorescein. The free groups, which can be tailored by the employed ratio of the reactants, are accessible for covalent attachment of drugs, as was demonstrated by functionalization with dexamethasone. The sequential network formation and functionalization with click chemistry allows access to multifunctional materials relevant for medical applications. KW - Click chemistry KW - Hydrogel KW - Polymer functionalization KW - Biopolymer KW - Rheology KW - Multifunctionality Y1 - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.01.017 SN - 0014-3057 SN - 1873-1945 VL - 100 SP - 77 EP - 85 PB - Elsevier CY - Oxford ER - TY - THES A1 - Tunn, Isabell T1 - From single molecules to bulk materials: tuning the viscoelastic properties of coiled coil cross-linked hydrogels N2 - The development of bioinspired self-assembling materials, such as hydrogels, with promising applications in cell culture, tissue engineering and drug delivery is a current focus in material science. Biogenic or bioinspired proteins and peptides are frequently used as versatile building blocks for extracellular matrix (ECM) mimicking hydrogels. However, precisely controlling and reversibly tuning the properties of these building blocks and the resulting hydrogels remains challenging. Precise control over the viscoelastic properties and self-healing abilities of hydrogels are key factors for developing intelligent materials to investigate cell matrix interactions. Thus, there is a need to develop building blocks that are self-healing, tunable and self-reporting. This thesis aims at the development of α-helical peptide building blocks, called coiled coils (CCs), which integrate these desired properties. Self-healing is a direct result of the fast self-assembly of these building blocks when used as material cross-links. Tunability is realized by means of reversible histidine (His)-metal coordination bonds. Lastly, implementing a fluorescent readout, which indicates the CC assembly state, self-reporting hydrogels are obtained. Coiled coils are abundant protein folding motifs in Nature, which often have mechanical function, such as in myosin or fibrin. Coiled coils are superhelices made up of two or more α-helices wound around each other. The assembly of CCs is based on their repetitive sequence of seven amino acids, so-called heptads (abcdefg). Hydrophobic amino acids in the a and d position of each heptad form the core of the CC, while charged amino acids in the e and g position form ionic interactions. The solvent-exposed positions b, c and f are excellent targets for modifications since they are more variable. His-metal coordination bonds are strong, yet reversible interactions formed between the amino acid histidine and transition metal ions (e.g. Ni2+, Cu2+ or Zn2+). His-metal coordination bonds essentially contribute to the mechanical stability of various high-performance proteinaceous materials, such as spider fangs, Nereis worm jaws and mussel byssal threads. Therefore, I bioengineered reversible His-metal coordination sites into a well-characterized heterodimeric CC that served as tunable material cross-link. Specifically, I took two distinct approaches facilitating either intramolecular (Chapter 4.2) and/or intermolecular (Chapter 4.3) His-metal coordination. Previous research suggested that force-induced CC unfolding in shear geometry starts from the points of force application. In order to tune the stability of a heterodimeric CC in shear geometry, I inserted His in the b and f position at the termini of force application (Chapter 4.2). The spacing of His is such that intra-CC His-metal coordination bonds can form to bridge one helical turn within the same helix, but also inter-CC coordination bonds are not generally excluded. Starting with Ni2+ ions, Raman spectroscopy showed that the CC maintained its helical structure and the His residues were able to coordinate Ni2+. Circular dichroism (CD) spectroscopy revealed that the melting temperature of the CC increased by 4 °C in the presence of Ni2+. Using atomic force microscope (AFM)-based single molecule force spectroscopy, the energy landscape parameters of the CC were characterized in the absence and the presence of Ni2+. His-Ni2+ coordination increased the rupture force by ~10 pN, accompanied by a decrease of the dissociation rate constant. To test if this stabilizing effect can be transferred from the single molecule level to the bulk viscoelastic material properties, the CC building block was used as a non-covalent cross-link for star-shaped poly(ethylene glycol) (star-PEG) hydrogels. Shear rheology revealed a 3-fold higher relaxation time in His-Ni2+ coordinating hydrogels compared to the hydrogel without metal ions. This stabilizing effect was fully reversible when using an excess of the metal chelator ethylenediaminetetraacetate (EDTA). The hydrogel properties were further investigated using different metal ions, i.e. Cu2+, Co2+ and Zn2+. Overall, these results suggest that Ni2+, Cu2+ and Co2+ primarily form intra-CC coordination bonds while Zn2+ also participates in inter-CC coordination bonds. This may be a direct result of its different coordination geometry. Intermolecular His-metal coordination bonds in the terminal regions of the protein building blocks of mussel byssal threads are primarily formed by Zn2+ and were found to be intimately linked to higher-order assembly and self-healing of the thread. In the above example, the contribution of intra-CC and inter-CC His-Zn2+ cannot be disentangled. In Chapter 4.3, I redesigned the CC to prohibit the formation of intra-CC His-Zn2+ coordination bonds, focusing only on inter-CC interactions. Specifically, I inserted His in the solvent-exposed f positions of the CC to focus on the effect of metal-induced higher-order assembly of CC cross-links. Raman and CD spectroscopy revealed that this CC building block forms α-helical Zn2+ cross-linked aggregates. Using this CC as a cross-link for star-PEG hydrogels, I showed that the material properties can be switched from viscoelastic in the absence of Zn2+ to elastic-like in the presence of Zn2+. Moreover, the relaxation time of the hydrogel was tunable over three orders of magnitude when using different Zn2+:His ratios. This tunability is attributed to a progressive transformation of single CC cross-links into His-Zn2+ cross-linked aggregates, with inter-CC His-Zn2+ coordination bonds serving as an additional, cross-linking mode. Rheological characterization of the hydrogels with inter-CC His-Zn2+ coordination raised the question whether the His-Zn2+ coordination bonds between CCs or also the CCs themselves rupture when shear strain is applied. In general, the amount of CC cross-links initially formed in the hydrogel as well as the amount of CC cross-links breaking under force remains to be elucidated. In order to more deeply probe these questions and monitor the state of the CC cross-links when force is applied, a fluorescent reporter system based on Förster resonance energy transfer (FRET) was introduced into the CC (Chapter 4.4). For this purpose, the donor-acceptor pair carboxyfluorescein and tetramethylrhodamine was used. The resulting self-reporting CC showed a FRET efficiency of 77 % in solution. Using this fluorescently labeled CC as a self-reporting, reversible cross-link in an otherwise covalently cross-linked star-PEG hydrogel enabled the detection of the FRET efficiency change under compression force. This proof-of-principle result sets the stage for implementing the fluorescently labeled CCs as molecular force sensors in non-covalently cross-linked hydrogels. In summary, this thesis highlights that rationally designed CCs are excellent reversibly tunable, self-healing and self-reporting hydrogel cross-links with high application potential in bioengineering and biomedicine. For the first time, I demonstrated that His-metal coordination-based stabilization can be transferred from the single CC level to the bulk material with clear viscoelastic consequences. Insertion of His in specific sequence positions was used to implement a second non-covalent cross-linking mode via intermolecular His-metal coordination. This His-metal binding induced aggregation of the CCs enabled for reversibly tuning the hydrogel properties from viscoelastic to elastic-like. As a proof-of-principle to establish self-reporting CCs as material cross-links, I labeled a CC with a FRET pair. The fluorescently labelled CC acts as a molecular force sensor and first preliminary results suggest that the CC enables the detection of hydrogel cross-link failure under compression force. In the future, fluorescently labeled CC force sensors will likely not only be used as intelligent cross-links to study the failure of hydrogels but also to investigate cell-matrix interactions in 3D down to the single molecule level. N2 - Die Entwicklung von biomimetischen Materialien, wie Hydrogelen, zur Anwendung in der Zellkultur und der regenerativen Medizin bildet einen aktuellen Schwerpunkt der Materialwissenschaften. Häufig werden natürlich vorkommende oder neu entwickelte Proteine als biomimetische Bausteine für Hydrogele genutzt, welche die extrazelluläre Umgebung von Zellen nachahmen. Gegenwärtig bleibt es jedoch eine Herausforderung, die Eigenschaften dieser Bausteine und der daraus entwickelten Materialien genau zu kontrollieren und gezielt maßzuschneidern. Jedoch stellen präzise kontrollierbare Materialeigenschaften einen Schlüsselfaktor für die Herstellung von intelligenten Materialen für die Zellkultur dar. Das Ziel dieser Arbeit ist die Entwicklung von α-helikalen Protein-Bausteinen, so genannter Coiled Coils (CCs), mit maßgeschneiderten, reversibel veränderbaren Eigenschaften. Dazu wurden reversible Histidin (His)-Metall-Koordinationsbindungen in ein CC Heterodimer eingefügt. Des Weiteren wurden Fluoreszenz-markierte CCs entwickelt, um das Verhalten der CC-Bausteine in Hydrogelen unter Krafteinwirkung zu untersuchen. In der Natur kommen CCs oft als Faltungsmotive in Proteinen vor, die eine mechanische Funktion haben, z.B. Myosin oder Fibrin. CCs bestehen aus zwei bis sieben α-Helices, die eine Superhelix bilden. Die Aminosäuresequenz von CCs ist hoch repetitiv und besteht aus sieben sich wiederholenden Aminosäurepositionen (abcdefg). In den Positionen a und d befinden sich aliphatische Aminosäuren, die den hydrophoben Kern des CCs bilden. Die Positionen e und g werden durch geladene Aminosäuren besetzt, die ionische Bindungen eingehen. In den Lösungsmittel-exponierten Positionen, können diverse Aminosäure platziert werden. Daher sind diese Positionen für Modifikationen gut geeignet. His-Metall-Koordinationsbindungen sind stabile Bindungen der Aminosäure His mit Übergangsmetallionen, wie Ni2+, Cu2+ oder Zn2+. His-Metall-Koordinationsbindungen tragen entscheidend zur mechanischen Stabilität von verschiedenen Protein-basierten Biomaterialien bei, z.B. in den Fangzähnen von Spinnen oder in Byssusfäden von Miesmuscheln. Daher wurden His-Metall-Koordinationsstellen in dieser Arbeit verwendet, um ein gut charakterisiertes CC Heterodimer zu stabilisieren. Zwei verschiedene Ansätze wurden zur Stabilisierung des CCs, und den daraus synthetisierten Materialien, genutzt. Zum einen wurden die His-Metall-Koordinationsbindungen so im CC platziert, dass primär Koordination innerhalb einer Helix stattfindet (intra-CC) (Kapitel 4.2). Zum anderen wurde His in Positionen eingefügt, die nur Metall-Koordinationsbindungen zwischen den CCs erlauben (inter-CC) (Kapitel 4.3). Bisherige Forschungsergebnisse zur mechanischen Entfaltung von CCs in der Schergeometrie lassen vermuten, dass die Entfaltung am Angriffspunkt der Kraft beginnt. Um die Stabilität einzelner CC Heterodimere in der Schergeometrie zu erhöhen, habe ich His-Metall Koordinationsbindungen in den Positionen b und f an den Enden der CC-Peptide einfügt (intra-CC), an denen die Scherkraft angreift (Kapitel 4.2). Mittels Raman Spektroskopie konnte ich zeigen, dass das His-modifizierte CC α-helikal bleibt und Ni2+ koordiniert. Zirkulardichroismus Spektroskopie wurde genutzt, um die thermodynamische Stabilität mit und ohne Ni2+ zu ermitteln. Unter Zugabe von Ni2+ erhöhte sich die Schmelztemperatur des CCs um 4 °C. Um die Energielandschaft der Entfaltung zu untersuchen, wurde Einzelmolekülkraftspektroskopie mit dem Rasterkraftmikroskop durchgeführt. His-Ni2+-Koordination führte zu einer Erhöhung der Abrisskraft um 10 pN und einer 10-fach verringerten Dissoziationskonstante. Die Koordination von Ni2+ führt demnach zu einer Stabilisierung des CCs. Um zu testen, ob der stabilisierende Effekt vom Einzelmolekül auf die viskoelastischen Eigenschaften von Hydrogelen übertragbar ist, wurde das CC als Vernetzungs-Baustein für sternförmiges Polyethylenglykol genutzt. Scherrheologie zeigte, dass die Relaxationszeit der CC-Hydrogele bei Zugabe von Ni2+ um das 3-fache erhöht ist. Dieser stabilisierende Effekt war vollkommen reversibel, wenn Metallchelatoren, wie Ethylendiamintetraessigsäure (EDTA) zugegeben wurden. Des Weiteren konnte ich zeigen, dass Cu2+ und Co2+ intra-CC Koordinationsbindungen eingehen und einen ähnlichen Effekt auf die Relaxationszeit haben wie Ni2+, wohingegen Zn2+ auch zwischen verschiedenen CCs (inter-CC) koordiniert wurde. Intermolekulare His-Zn2+-Koordination an den Enden der Protein-Bausteine von Byssusfäden ist essentiell für deren hierarchische Struktur und Selbstheilung nach mechanischer Belastung. Im oben beschriebenen CC kann der Effekt der intra- und inter-CC His-Zn2+-Koordination nicht klar voneinander getrennt werden. In Kapitel 4.3 wurden die His daher mit größerem Abstand in das CC eingefügt, so dass nur inter-CC Zn2+-Koordination möglich war. Raman und Zirkulardichroismus Spektroskopie zeigten, dass dieses CC unter Zugabe von Zn2+ aggregiert. Während sich die CC-Hydrogele ohne Zn2+ viskoelastisch verhielten, führte die Zugabe von Zn2+ zu annähernd elastischem Verhalten. Unter Verwendung von verschiedenen His:Zn2+ Verhältnissen, konnte die Relaxationszeit in einem großen Bereich gezielt verändert werden. Diese maßgeschneiderten Materialeigenschaften sind auf die schrittweise Umwandlung von einzelnen CC-Vernetzungen zu CC-Aggregaten mit inter-CC His-Zn2+-Koordination zurückzuführen. Die Rheologiemessungen mit den His-Zn2+-vernetzten CC-Aggregaten werfen die Frage auf, ob die inter-CC His-Zn2+-Koordinationsbindungen oder die CCs selbst brechen, wenn eine Kraft wirkt. Im Allgemeinen sind die Mechanismen der Dissoziation von Vernetzern im Hydrogel unter Krafteinwirkung größtenteils unerforscht. Um diese zu beleuchten, wurde das CC mit einem Fluoreszenz-Reportersystem ausgestattet (Kapitel 4.4). Genauer gesagt, wurde ein Förster Resonanzenergietransfer (FRET) Paar (Carboxyfluorescein-Tetramethylrhodamin) an das CC gekoppelt. Die Effizienz des Energietransfers gibt in diesem System Aufschluss darüber, ob das CC assoziiert oder dissoziiert ist. Das FRET-markierte CC wurde als nicht-kovalenter, reversibler molekularer Kraftsensor in einem ansonsten kovalent vernetzten Hydrogel eingesetzt. Unter Kompression verringerte sich die FRET-Effizienz, was einen ersten Hinweise auf die Dissoziation des CCs darstellt. Dieses Ergebnis verdeutlicht, dass CCs hervorragende molekulare Kraftsensoren für biomimetische Materialien darstellen. Diese Arbeit demonstriert, dass CCs mit maßgeschneiderten, reversibel manipulierbaren Eigenschaften exzellente Bausteine für Hydrogele sind, die in der Zellkultur und der regenerativen Medizin Verwendung finden können. Es konnte zum ersten Mal gezeigt werden, dass einzelne CCs durch His-Metall-Koordinationsbindungen reversibel stabilisiert werden können und dass diese molekulare Stabilisierung direkt auf die viskoelastischen Materialeigenschaften von Hydrogelen übertragbar ist. Durch gezieltes Einfügen von intermolekularen His-Metall-Koordinationsbindungen gelang es, CC-Hydrogele mit einem zweiten übergeordneten His-Zn2+ basierten Vernetzungsmodus herzustellen. So konnte die Relaxationszeit der Hydrogele über einen weiten Bereich maßgeschneidert kontrolliert werden. Um CCs als molekulare Kraftsensoren in Materialien zu etablieren, wurde das CC Heterodimer mit einem FRET-Reportersystem ausgestattet. Erste Experimente deuten darauf hin, dass die Dissoziation des CCs im Hydrogel unter Krafteinwirkung optisch verfolgt werden kann. Zukünftig können CCs mit maßgeschneiderter Stabilität nicht nur als molekulare Kraftsensoren für Materialien, sondern auch zur Erforschung von Zell-Matrix Wechselwirkungen eingesetzt werden. T2 - Von Molekülen zu Materialien: Coiled Coil-vernetzte Hydrogele mit maßgeschneiderten viskoelastischen Eigenschaften KW - biochemistry KW - coiled coil KW - histidine-metal coordination KW - Förster resonance energy transfer (FRET) KW - rheology KW - single-molecule force spectroscopy KW - Biochemie KW - Coiled Coil KW - Hydrogel KW - Histidin-Metall Koordination KW - Förster Resonanz Energie Transfer (FRET) KW - Rheologie KW - Einzelmolekülkraftspektroskopie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475955 ER - TY - JOUR A1 - Piluso, Susanna A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Enzymatic action as switch of bulk to surface degradation of clicked gelatin-based networks JF - Polymers for advanced technologies N2 - Polymer degradation occurs under physiological conditions in vitro and in vivo, especially when bonds susceptible to hydrolysis are present in the polymer. Understanding of the degradation mechanism, changes of material properties over time, and overall rate of degradation is a necessary prerequisite for the knowledge-based design of polymers with applications in biomedicine. Here, hydrolytic degradation studies of gelatin-based networks synthesized by copper-catalyzed azide-alkyne cycloaddition reaction are reported, which were performed with or without addition of an enzyme. In all cases, networks with a stilbene as crosslinker proofed to be more resistant to degradation than when an octyl diazide was used. Without addition of an enzyme, the rate of degradation was ruled by the crosslinking density of the network and proceeded via a bulk degradation mechanism. Addition of Clostridium histolyticum collagenase resulted in a much enhanced rate of degradation, which furthermore occurred via surface erosion. The mesh size of the hydrogels (>7nm) was in all cases larger than the hydrodynamic radius of the enzyme (4.5nm) so that even in very hydrophilic networks with large mesh size enzymes may be used to induce a fast surface degradation mechanism. This observation is of general interest when designing hydrogels to be applied in the presence of enzymes, as the degradation mechanism and material performance are closely interlinked. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - Hydrogel KW - Biopolymer KW - Degradation Y1 - 2017 U6 - https://doi.org/10.1002/pat.3962 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1318 EP - 1324 PB - Wiley CY - Hoboken ER - TY - THES A1 - Vacogne, Charlotte D. T1 - New synthetic routes towards well-defined polypeptides, morphologies and hydrogels T1 - Neue Syntheserouten zu wohldefinierten Polypeptiden, Morphologien und Hydrogelen N2 - Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications. N2 - Proteine, auch Polypeptide genannt, sind große Biomoleküle, die aus kleineren Aminosäuren bestehen. Diese sind zu langen Ketten miteinander verbunden, wie die Perlen auf einer Perlenkette. Sie werden in Zellen produziert, können in Tieren und Pflanzen gefunden werden und haben vielfältige Funktionen. Eine dieser Funktionen ist es, die umgebenen Zellen und Gewebe wie ein Gerüst zu stützen. Kollagen (welches in Haut, Knorpel, Sehnen und Knochen zu finden ist) und Keratin (welches in Haaren und Nägeln vorkommt) gehören zu diesen Strukturproteinen. Jedoch wenn ein Gewebe beschädigt ist, beispielsweise als Folge eines Unfalls, kann sich das Grundgerüst aus diesen Strukturproteinen manchmal nicht mehr selbst regenerieren. Maßgefertigte synthetische Polypeptide, können dafür verwendet werden, die Heilung und Wiederherstellung des Gewebes zu Unterstützen. Diese Polypeptide werden mit einer Reihe an chemischen Reaktionen synthetisiert, welche hauptsächlich darauf abzielen Aminosäuren miteinander zu verknüpfen. Synthetische Polypeptide sind weniger Komplex als die von Zellen hergestellten, natürlichen Polypeptide (Proteine). Während in den natürlichen Polypeptiden die Aminosäuren in einer von der DNA definierten Reihenfolge, welche als Sequenz bezeichnet wird, angeordnet sind, sind sie in synthetischen Polypeptiden zumeist zufällig verteilt. Die Konsequenz daraus ist, dass synthetische Polypeptide nicht immer so Leistungsfähig sind wie natürliche Proteine und ein durchdachtes Design benötigen. Zwei Aminosäuren wurden in dieser Dissertation sorgfältig ausgewählt und verwendet um eine Serie an Polypeptiden mit unterschiedlicher Zusammensetzung und Länge zu synthetisieren. Ein neuer und vielseitiger Syntheseweg wurde ebenfalls entwickelt und der zugrundeliegende Mechanismus untersucht. Die Polypeptide wurden gründlich analysiert und neue Materialien wurden aus ihnen entwickelt. In Lösung gebracht formten diese Fasern, ähnlich denen von Kollagen, welche sich wiederum zu robusten Netzwerken anordneten. Aus diesen Netzwerken ließen sich Hydrogele herstellen, welche in der Lage waren große Mengen an Wasser aufzunehmen. Diese Hydrogele wiederum stellen vielversprechende Kandidaten für biomedizinische Anwendungen dar. KW - polymer KW - chemistry KW - biomaterial KW - polymerization KW - kinetics KW - polypeptide KW - colloid KW - gelation KW - hydrogel KW - organogel KW - secondary structure KW - physical KW - NCA KW - N-carboxyanhydride KW - Polymer KW - Chemie KW - Biomaterial KW - Polymerisation KW - Kinetik KW - Polypeptid KW - Kolloid KW - Gelieren KW - Hydrogel KW - Organogel KW - Sekundärstruktur KW - physikalisch KW - NCA KW - N-carboxyanhydrid Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396366 ER - TY - JOUR A1 - Adelsberger, Joseph A1 - Bivigou Koumba, Achille Mayelle A1 - Miasnikova, Anna A1 - Busch, Peter A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution-a SANS study of the temperature-induced switching behavior JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - A concentrated solution of a symmetric triblock copolymer with a thermoresponsive poly(methoxy diethylene glycol acrylate) (PMDEGA) middle block and short hydrophobic, fully deuterated polystyrene end blocks is investigated in D2O where it undergoes a lower critical solution temperature-type phase transition at ca. 36 A degrees C. Small-angle neutron scattering (SANS) in a wide temperature range (15-50 A degrees C) is used to characterize the size and inner structure of the micelles as well as the correlation between the micelles and the formation of aggregates by the micelles above the cloud point (CP). A model featuring spherical core-shell micelles, which are correlated by a hard-sphere potential or a sticky hard-sphere potential together with a Guinier form factor describing aggregates formed by the micelles above the CP, fits the SANS curves well in the entire temperature range. The thickness of the thermoresponsive micellar PMDEGA shell as well as the hard-sphere radius increase slightly already below the cloud point. Whereas the thickness of the thermoresponsive micellar shell hardly shrinks when heating through the CP and up to 50 A degrees C, the hard-sphere radius decreases within 3.5 K at the CP. The volume fraction decreases already significantly below the CP, which may be at the origin of the previously observed gel-sol transition far below the CP (Miasnikova et al., Langmuir 28: 4479-4490, 2012). Above the CP, small, and at higher temperatures, large aggregates are formed by the micelles. KW - Hydrogel KW - Thermoresponsive KW - LCST behavior KW - SANS Y1 - 2015 U6 - https://doi.org/10.1007/s00396-015-3535-6 SN - 0303-402X SN - 1435-1536 VL - 293 IS - 5 SP - 1515 EP - 1523 PB - Springer CY - New York ER - TY - JOUR A1 - Richter, Marcel A1 - Zakrevskyy, Yuriy A1 - Eisele, Michael A1 - Lomadze, Nino A1 - Santer, Svetlana A1 - von Klitzing, Regine T1 - Effect of pH, co-monomer content, and surfactant structure on the swelling behavior of microgel-azobenzene-containing surfactant complex JF - Polymer : the international journal for the science and technology of polymers N2 - The contraction/swelling transition of anionic PNIPAM-co-AAA particles can be manipulated by light using interactions with cationic azobenzene-containing surfactant. In this study the influence of pH-buffers and their concentrations, the charge density (AAA content) in microgel particles as well as the spacer length of the surfactant on the complex formation between the microgel and surfactant is investigated. It is shown that the presence of pH buffer can lead to complete blocking of the interactions in such complexes and the resulting microgel contraction/swelling response. There is a clear competition between the buffer ions and the surfactant molecules interacting with microgel particles. When working in pure water solutions with fixed concentration (charge density) of microgel, the contraction/swelling of the particles is controlled only by relative concentration (charge ratio) of the surfactant and AAA groups of the microgel. Furthermore, the particle contraction is more efficient for shorter spacer length of the surfactant. The onset point of the contraction process is not affected by the surfactant hydrophobicity. This work provides new insight into the interaction between microgel particles and photo-sensitive surfactants, which offers high potential in new sensor systems. (C) 2014 Elsevier Ltd. All rights reserved. KW - Hydrogel KW - Photosensitive surfactant KW - PNIPAM Y1 - 2014 U6 - https://doi.org/10.1016/j.polymer.2014.10.027 SN - 0032-3861 SN - 1873-2291 VL - 55 IS - 25 SP - 6513 EP - 6518 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Piluso, Susanna A1 - Hiebl, Bernhard A1 - Gorb, Stanislav N. A1 - Kovalev, Alexander A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties JF - The international journal of artificial organs N2 - Biopolymers of the extracellular matrix are attractive starting materials for providing degradable and biocompatible biomaterials. In this study, hyaluronic acid-based hydrogels with tunable mechanical properties were prepared by the use of copper-catalyzed azide-alkyne cycloaddition (known as "click chemistry"). Alkyne-functionalized hyaluronic acid was crosslinked with linkers having two terminal azide functionalities, varying crosslinker density as well as the lengths and rigidity of the linker molecules. By variation of the crosslinker density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-4 kPa were prepared. The washed materials contained a maximum of 6.8 mg copper per kg dry weight and the eluate of the gel crosslinked with diazidostilbene did not show toxic effects on L929 cells. The hyaluronic acid-based hydrogels have potential as biomaterials for cell culture or soft tissue regeneration applications. KW - Biomaterial KW - Hydrogel KW - Hyaluronic acid KW - Microindentation KW - Rheology Y1 - 2011 U6 - https://doi.org/10.5301/IJAO.2011.6394 SN - 0391-3988 VL - 34 IS - 2 SP - 192 EP - 197 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Neffe, Axel T. A1 - Loebus, Axel A1 - Zaupa, Alessandro A1 - Stötzel, Christian A1 - Müller, Frank A. A1 - Lendlein, Andreas T1 - Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers JF - Acta biomaterialia N2 - Combining gelatins functionalized with the tyrosine-derived groups desaminotyrosine or desaminotyrosyl tyrosine with hydroxyapatite (HAp) led to the formation of composite materials with much lower swelling ratios than those of the pure matrices. Shifts of the infra-red (IR) bands related to the free carboxyl groups could be observed in the presence of HAp, which suggested a direct interaction of matrix and filler that formed additional physical cross-links in the material. In tensile tests and rheological measurements the composites equilibrated in water had increased Young's moduli (from 200 kPa up to 2 MPa) and tensile strengths (from 57 kPa up to 1.1 MPa) compared with the matrix polymers without affecting the elongation at break. Furthermore, an increased thermal stability of the networks from 40 to 85 degrees C could be demonstrated. The differences in the behaviour of the functionalized gelatins compared with pure gelatin as a matrix suggested an additional stabilizing bond between the incorporated aromatic groups and the HAp as supported by the IR results. The composites can potentially be applied as bone fillers. KW - Gelatin KW - Hydroxyapatite KW - Composite KW - Hydrogel KW - Biomaterial Y1 - 2011 U6 - https://doi.org/10.1016/j.actbio.2010.11.025 SN - 1742-7061 VL - 7 IS - 4 SP - 1693 EP - 1701 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zhong, Qi A1 - Wang, Weinan A1 - Adelsberger, Joseph A1 - Golosova, Anastasia A1 - Koumba, Achille M. Bivigou A1 - Laschewsky, André A1 - Funari, Sergio S. A1 - Perlich, Jan A1 - Roth, Stephan V. A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Collapse transition in thin films of poly(methoxydiethylenglycol acrylate) JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - The thermal behavior of poly(methoxydiethylenglycol acrylate) (PMDEGA) is studied in thin hydrogel films on solid supports and is compared with the behavior in aqueous solution. The PMDEGA hydrogel film thickness is varied from 2 to 422 nm. Initially, these films are homogenous, as measured with optical microscopy, atomic force microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering (GISAXS). However, they tend to de-wet when stored under ambient conditions. Along the surface normal, no long-ranged correlations between substrate and film surface are detected with GISAXS, due to the high mobility of the polymer at room temperature. The swelling of the hydrogel films as a function of the water vapor pressure and the temperature are probed for saturated water vapor pressures between 2,380 and 3,170 Pa. While the swelling capability is found to increase with water vapor pressure, swelling in dependence on the temperature revealed a collapse phase transition of a lower critical solution temperature type. The transition temperature decreases from 40.6 A degrees C to 36.6 A degrees C with increasing film thickness, but is independent of the thickness for very thin films below a thickness of 40 nm. The observed transition temperature range compares well with the cloud points observed in dilute (0.1 wt.%) and semi-dilute (5 wt.%) solution which decrease from 45 A degrees C to 39 A degrees C with increasing concentration. KW - Hydrogel KW - Thin film KW - Thermoresponsive KW - LCST behavior KW - GISAXS KW - AFM Y1 - 2011 U6 - https://doi.org/10.1007/s00396-011-2384-1 SN - 0303-402X VL - 289 IS - 5-6 SP - 569 EP - 581 PB - Springer CY - New York ER -