TY - JOUR A1 - Stelbrink, Björn A1 - von Rintelen, Thomas A1 - Richter, Kirsten A1 - Finstermeier, Knut A1 - Frahnert, Sylke A1 - Cracraft, Joel A1 - Hofreiter, Michael T1 - Insights into the geographical origin and phylogeographical patterns of Paradisaea birds-of-paradise JF - Zoological journal of the Linnean Society N2 - Birds-of-paradise represent a textbook example for geographical speciation and sexual selection. Perhaps the most iconic genus is Paradisaea, which is restricted to New Guinea and a few surrounding islands. Although several species concepts have been applied in the past to disentangle the different entities within this genus, no attempt has been made so far to uncover phylogeographical patterns based on a genetic dataset that includes multiple individuals per species. Here, we applied amplicon sequencing for the mitochondrial fragment Cytb for a total of 69 museum specimens representing all seven Paradisaea species described and inferred both phylogenetic relationships and colonization pathways across the island. Our analyses show that the most recent common ancestor of the diverging lineages within Paradisaea probably originated in the Late Miocene in the eastern part of the Central Range and suggest that tectonic processes played a key role in shaping the diversification and distribution of species. All species were recovered as monophyletic, except for those within the apoda-minor-raggiana clade, which comprises the allopatric and parapatric species P. apoda, P. minor and P. raggiana. The comparatively young divergence times, together with possible instances of mitochondrial introgression and incomplete lineage sorting, suggest recent speciation in this clade. KW - amplicon sequencing KW - Cytb KW - historical DNA KW - molecular clock KW - molecular phylogeny KW - museomics KW - New Guinea KW - Paradisaeidae Y1 - 2022 U6 - https://doi.org/10.1093/zoolinnean/zlac010 SN - 0024-4082 SN - 1096-3642 VL - 196 IS - 4 SP - 1394 EP - 1407 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Masigol, Hossein A1 - Rezakhani, Forough A1 - Pourmoghaddam, Mohammad Javad A1 - Khodaparast, Seyed Akbar A1 - Grossart, Hans-Peter T1 - The introduction of two new species of aquatic fungi from Anzali Lagoon, Northern Iran JF - Diversity N2 - During a survey of aquatic fungi from Anzali Lagoon in Iran, several fungal specimens were isolated from freshwater habitats. Morphological evidence and comparing sequencing based on rDNA (ITS and LSU) and protein-coding genes (TEF1 and TUB2) showed that some isolates belong to undescribed fungal species. These isolates belong to Arthrobotrys and Sarocladium, two ascomycetes genera. Arthrobotrys hyrcanus, sp. nov., differs from closely related species such as A. dianchiensis by its larger conidia and septation of primary conidia. Sarocladium pseudokiliense, sp. nov., was similar to S. kiliense, but distinguished by its conidial shape and the absence of adelophialides and chlamydospores. Morphological descriptions, illustrations and multilocus phylogenetic analysis for both new species are provided. KW - Arthrobotrys KW - Ascomycota KW - freshwater fungi KW - molecular phylogeny KW - morphological KW - Sarocladium KW - taxonomy Y1 - 2022 U6 - https://doi.org/10.3390/d14100889 SN - 1424-2818 VL - 14 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Paraskevopoulou, Sofia A1 - Dennis, Alice B. A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers JF - Scientific Reports N2 - Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species’ adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming. KW - Ecology KW - Evolution KW - Oyster Crassostrea-gigas KW - cryptic species complex KW - pacific oyster KW - thermal-stress KW - genetic differentiation KW - expression patterns KW - molecular phylogeny KW - shock proteins KW - evolutionary KW - hsp70 Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-70173-0 SN - 2045-2322 VL - 10 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - GEN A1 - Paraskevopoulou, Sofia A1 - Dennis, Alice B. A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species’ adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1012 KW - Ecology KW - Evolution KW - Oyster Crassostrea-gigas KW - cryptic species complex KW - pacific oyster KW - thermal-stress KW - genetic differentiation KW - expression patterns KW - molecular phylogeny KW - shock proteins KW - evolutionary KW - hsp70 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482280 SN - 1866-8372 IS - 1012 ER -