TY - GEN A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1403 KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515694 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - mRNA transfection-induced activation of primary human monocytes and macrophages BT - Dependence on carrier system and nucleotide modifcation JF - Scientific reports N2 - Monocytes and macrophages are key players in maintaining immune homeostasis. Identifying strategies to manipulate their functions via gene delivery is thus of great interest for immunological research and biomedical applications. We set out to establish conditions for mRNA transfection in hard-to-transfect primary human monocytes and monocyte-derived macrophages due to the great potential of gene expression from in vitro transcribed mRNA for modulating cell phenotypes. mRNA doses, nucleotide modifications, and different carriers were systematically explored in order to optimize high mRNA transfer rates while minimizing cell stress and immune activation. We selected three commercially available mRNA transfection reagents including liposome and polymer-based formulations, covering different application spectra. Our results demonstrate that liposomal reagents can particularly combine high gene transfer rates with only moderate immune cell activation. For the latter, use of specific nucleotide modifications proved essential. In addition to improving efficacy of gene transfer, our findings address discrete aspects of innate immune activation using cytokine and surface marker expression, as well as cell viability as key readouts to judge overall transfection efficiency. The impact of this study goes beyond optimizing transfection conditions for immune cells, by providing a framework for assessing new gene carrier systems for monocyte and macrophage, tailored to specific applications. KW - sirna transfection KW - mediated delivery KW - gene delivery KW - efficient KW - immunogenicity KW - lipoplexes KW - cells KW - therapeutics KW - polarization KW - pathways Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-60506-4 SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London ER - TY - GEN A1 - Otto, Nils A1 - Marelja, Zvonimir A1 - Schoofs, Andreas A1 - Kranenburg, Holger A1 - Bittern, Jonas A1 - Yildirim, Kerem A1 - Berh, Dimitri A1 - Bethke, Maria A1 - Thomas, Silke A1 - Rode, Sandra A1 - Risse, Benjamin A1 - Jiang, Xiaoyi A1 - Pankratz, Michael A1 - Leimkühler, Silke A1 - Klämbt, Christian T1 - The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 975 KW - molybdenum cofactor deficiency KW - blood-brain-barrier KW - larval locomotion KW - energy-metabolism KW - cerebral-cortex KW - astrocytes KW - behavior KW - cells KW - transmission KW - disease KW - Diseases of the nervous system KW - Glial biology KW - Glial development KW - Neurotransmitters Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426205 SN - 1866-8372 IS - 975 ER -