TY - JOUR A1 - Czolkos, Ilja A1 - Dock, Eva A1 - Tonning, Erik A1 - Christensen, Jakob A1 - Winther-Nielsen, Margrethe A1 - Carlsson, Charlotte A1 - Mojzikova, Renata A1 - Skladal, Petr A1 - Wollenberger, Ursula A1 - Norgaard, Lars A1 - Ruzgas, Tautgirdas A1 - Emneus, Jenny T1 - Prediction of wastewater quality using amperometric bioelectronic tongues JF - Marine policy N2 - Wastewater samples from a Swedish chemi-thermo-mechanical pulp (CTMP) mill collected at different purification stages in a wastewater treatment plant (WWTP) were analyzed with an amperometric enzyme-based biosensor array in a flow-injection system. In order to resolve the complex composition of the wastewater, the array consists of several sensing elements which yield a multidimensional response. We used principal component analysis (PCA) to decompose the array's responses, and found that wastewater with different degrees of pollution can be differentiated. With the help of partial least squares regression (PLS-R), we could link the sensor responses to the toxicity parameter, as well as to global organic pollution parameters (COD, BOD, and TOC). From investigating the influences of individual sensors in the array, it was found that the best models were in most cases obtained when all sensors in the array were included in the PLS-R model. We find that fast simultaneous determination of several global environmental parameters characterizing wastewaters is possible with this kind of biosensor array, in particular because of the link between the sensor responses and the biological effect onto the ecosystem into which the wastewater would be released. In conjunction with multivariate data analysis tools, there is strong potential to reduce the total time until a result is yielded from days to a few minutes. KW - Biosensor array KW - Electronic tongue KW - Amperometric sensor KW - Screen-printed electrode KW - Multivariate data analysis KW - Chemometrics KW - Wastewater KW - Toxicity KW - Phenolic compounds Y1 - 2016 U6 - https://doi.org/10.1016/j.bios.2015.08.055 SN - 0956-5663 SN - 1873-4235 VL - 75 SP - 375 EP - 382 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Köhler, Yvonne A1 - Luther, Eva Maria A1 - Meyer, Sören A1 - Schwerdtle, Tanja A1 - Dringen, Ralf T1 - Uptake and toxicity of arsenite and arsenate in cultured brain astrocytes JF - Journal of trace elements in medicine and biology N2 - Inorganic arsenicals are environmental toxins that have been connected with neuropathies and impaired cognitive functions. To investigate whether such substances accumulate in brain astrocytes and affect their viability and glutathione metabolism, we have exposed cultured primary astrocytes to arsenite or arsenate. Both arsenicals compromised the cell viability of astrocytes in a time- and concentration-dependent manner. However, the early onset of cell toxicity in arsenite-treated astrocytes revealed the higher toxic potential of arsenite compared with arsenate. The concentrations of arsenite and arsenate that caused within 24 h half-maximal release of the cytosolic enzyme lactate dehydrogenase were around 0.3 mM and 10 mM, respectively. The cellular arsenic contents of astrocytes increased rapidly upon exposure to arsenite or arsenate and reached after 4 h of incubation almost constant steady state levels. These levels were about 3-times higher in astrocytes that had been exposed to a given concentration of arsenite compared with the respective arsenate condition. Analysis of the intracellular arsenic species revealed that almost exclusively arsenite was present in viable astrocytes that had been exposed to either arsenate or arsenite. The emerging toxicity of arsenite 4 h after exposure was accompanied by a loss in cellular total glutathione and by an increase in the cellular glutathione disulfide content. These data suggest that the high arsenite content of astrocytes that had been exposed to inorganic arsenicals causes an increase in the ratio of glutathione disulfide to glutathione which contributes to the toxic potential of these substances. KW - Arsenic KW - Astrocytes KW - GSH KW - Metabolism KW - Toxicity Y1 - 2014 U6 - https://doi.org/10.1016/j.jtemb.2014.04.007 SN - 0946-672X VL - 28 IS - 3 SP - 328 EP - 337 PB - Elsevier CY - Jena ER -