TY - JOUR A1 - Kayler, Zachary E. A1 - Premke, Katrin A1 - Gessler, Arthur A1 - Gessner, Mark O. A1 - Griebler, Christian A1 - Hilt, Sabine A1 - Klemedtsson, Leif A1 - Kuzyakov, Yakov A1 - Reichstein, Markus A1 - Siemens, Jan A1 - Totsche, Kai-Uwe A1 - Tranvik, Lars A1 - Wagner, Annekatrin A1 - Weitere, Markus A1 - Grossart, Hans-Peter T1 - Integrating Aquatic and Terrestrial Perspectives to Improve Insights Into Organic Matter Cycling at the Landscape Scale JF - Frontiers in Earth Science N2 - Across a landscape, aquatic-terrestrial interfaces within and between ecosystems are hotspots of organic matter (OM) mineralization. These interfaces are characterized by sharp spatio-temporal changes in environmental conditions, which affect OM properties and thus control OM mineralization and other transformation processes. Consequently, the extent of OM movement at and across aquatic-terrestrial interfaces is crucial in determining OM turnover and carbon (C) cycling at the landscape scale. Here, we propose expanding current concepts in aquatic and terrestrial ecosystem sciences to comprehensively evaluate OM turnover at the landscape scale. We focus on three main concepts toward explaining OM turnover at the landscape scale: the landscape spatiotemporal context, OM turnover described by priming and ecological stoichiometry, and anthropogenic effects as a disruptor of natural OM transfer magnitudes and pathways. A conceptual framework is introduced that allows for discussing the disparities in spatial and temporal scales of OM transfer, changes in environmental conditions, ecosystem connectivity, and microbial-substrate interactions. The potential relevance of priming effects in both terrestrial and aquatic systems is addressed. For terrestrial systems, we hypothesize that the interplay between the influx of OM, its corresponding elemental composition, and the elemental demand of the microbial communities may alleviate spatial and metabolic thresholds. In comparison, substrate level OM dynamics may be substantially different in aquatic systems due to matrix effects that accentuate the role of abiotic conditions, substrate quality, and microbial community dynamics. We highlight the disproportionate impact anthropogenic activities can have on OM cycling across the landscape. This includes reversing natural OM flows through the landscape, disrupting ecosystem connectivity, and nutrient additions that cascade across the landscape. This knowledge is crucial for a better understanding of OM cycling in a landscape context, in particular since terrestrial and aquatic compartments may respond differently to the ongoing changes in climate, land use, and other anthropogenic interferences. KW - landscape connectivity KW - organic matter mineralization KW - priming effects KW - ecological stoichiometry KW - aquatic-terrestrial interfaces KW - anthropogenic interferences Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00127 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - van Velzen, Ellen A1 - Thieser, Tamara A1 - Berendonk, Thomas U. A1 - Weitere, Markus A1 - Gaedke, Ursula T1 - Inducible defense destabilizes predator–prey dynamics BT - the importance of multiple predators JF - Oikos N2 - Phenotypic plasticity in prey can have a dramatic impact on predator-prey dynamics, e.g. by inducible defense against temporally varying levels of predation. Previous work has overwhelmingly shown that this effect is stabilizing: inducible defenses dampen the amplitudes of population oscillations or eliminate them altogether. However, such studies have neglected scenarios where being protected against one predator increases vulnerability to another (incompatible defense). Here we develop a model for such a scenario, using two distinct prey phenotypes and two predator species. Each prey phenotype is defended against one of the predators, and vulnerable to the other. In strong contrast with previous studies on the dynamic effects of plasticity involving a single predator, we find that increasing the level of plasticity consistently destabilizes the system, as measured by the amplitude of oscillations and the coefficients of variation of both total prey and total predator biomasses. We explain this unexpected and seemingly counterintuitive result by showing that plasticity causes synchronization between the two prey phenotypes (and, through this, between the predators), thus increasing the temporal variability in biomass dynamics. These results challenge the common view that plasticity should always have a stabilizing effect on biomass dynamics: adding a single predator-prey interaction to an established model structure gives rise to a system where different mechanisms may be at play, leading to dramatically different outcomes. KW - phenotypic plasticity KW - inducible defense KW - stability KW - synchronization KW - predator-prey dynamics Y1 - 2018 U6 - https://doi.org/10.1111/oik.04868 SN - 0030-1299 SN - 1600-0706 VL - 127 IS - 11 SP - 1551 EP - 1562 PB - Wiley CY - Hoboken ER -