TY - JOUR A1 - Dominguez, Marisol A1 - Tiedemann, Ralph A1 - Reboreda, Juan C. A1 - Segura, Luciano A1 - Tittarelli, Fabian A1 - Mahler, Bettina T1 - Genetic structure reveals management units for the yellow cardinal (Gubernatrix cristata), endangered by habitat loss and illegal trapping JF - Conservation genetics KW - Genetic structure KW - Gubernatrix cristata KW - Management units KW - MtDNA KW - Microsatellites KW - Hybrids Y1 - 2017 U6 - https://doi.org/10.1007/s10592-017-0964-4 SN - 1566-0621 SN - 1572-9737 VL - 18 SP - 1131 EP - 1140 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Di Giacomo, Adrian S. A1 - Di Giacomo, Alejandro G. A1 - Kliger, Rafi A1 - Reboreda, Juan C. A1 - Tiedemann, Ralph A1 - Mahler, Bettina T1 - No evidence of genetic variation in microsatellite and mitochondrial DNA markers among remaining populations of the Strange-tailed Tyrant Alectrurus risora, an endangered grassland species JF - Bird conservation international N2 - The Strange-tailed Tyrant Alectrurus risora (Aves: Tyrannidae) is an endemic species of southern South American grasslands that suffered a 90% reduction of its original distribution due to habitat transformation. This has led the species to be classified as globally Vulnerable. By the beginning of the last century, populations were partially migratory and moved south during the breeding season. Currently, the main breeding population inhabits the Ibera wetlands in the province of Corrientes, north-east Argentina, where it is resident all year round. There are two remaining small populations in the province of Formosa, north-east Argentina, and in southern Paraguay, which are separated from the main population by the Parana-Paraguay River and its continuous riverine forest habitat. The populations of Corrientes and Formosa are separated by 300 km and the grasslands between populations are non-continuous due to habitat transformation. We used mtDNA sequences and eight microsatellite loci to test if there were evidences of genetic isolation between Argentinean populations. We found no evidence of genetic structure between populations (Phi(ST) = 0.004, P = 0.32; Fst = 0.01, P = 0.06), which can be explained by either retained ancestral polymorphism or by dispersal between populations. We found no evidence for a recent demographic bottleneck in nuclear loci. Our results indicate that these populations could be managed as a single conservation unit on a regional scale. Conservation actions should be focused on preserving the remaining network of areas with natural grasslands to guarantee reproduction, dispersal and prevent further decline of populations. Y1 - 2015 U6 - https://doi.org/10.1017/S0959270914000203 SN - 0959-2709 SN - 1474-0001 VL - 25 IS - 2 SP - 127 EP - 138 PB - Cambridge Univ. Press CY - New York ER -