TY - JOUR A1 - Hilker, Monika A1 - Schwachtje, Jens A1 - Baier, Margarete A1 - Balazadeh, Salma A1 - Bäurle, Isabel A1 - Geiselhardt, Sven A1 - Hincha, Dirk K. A1 - Kunze, Reinhard A1 - Mueller-Roeber, Bernd A1 - Rillig, Matthias G. A1 - Rolff, Jens A1 - Schmülling, Thomas A1 - Steppuhn, Anke A1 - van Dongen, Joost A1 - Whitcomb, Sarah J. A1 - Wurst, Susanne A1 - Zuther, Ellen A1 - Kopka, Joachim T1 - Priming and memory of stress responses in organisms lacking a nervous system JF - Biological reviews KW - priming KW - stress signalling KW - epigenetics KW - memory KW - fitness KW - stress tolerance KW - defence KW - bet hedging Y1 - 2016 U6 - https://doi.org/10.1111/brv.12215 SN - 1464-7931 SN - 1469-185X VL - 91 SP - 1118 EP - 1133 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Köslin-Findeklee, Fabian A1 - Rizi, Vajiheh Safavi A1 - Becker, Martin A. A1 - Parra-Londono, Sebastian A1 - Arif, Muhammad A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Kunze, Reinhard A1 - Horst, Walter J. T1 - Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.) JF - Plant science : an international journal of experimental plant biology N2 - High nitrogen (N) efficiency, characterized by high grain yield under N limitation, is an important agricultural trait in Brassica napus L. cultivars related to delayed senescence of older leaves during reproductive growth (a syndrome called stay-green). The aim of this study was thus to identify genes whose expression is specifically altered during N starvation-induced leaf senescence and that can be used as markers to distinguish cultivars at early stages of senescence prior to chlorophyll loss. To this end, the transcriptomes of leaves of two B. napus cultivars differing in stay-green characteristics and N efficiency were analyzed 4 days after the induction of senescence by either N starvation, leaf shading or detaching. In addition to N metabolism genes, N starvation mostly (and specifically) repressed genes related to photosynthesis, photorespiration and cell-wall structure, while genes related to mitochondrial electron transport and flavonoid biosynthesis were predominately up-regulated. A kinetic study over a period of 12 days with four B. napus cultivars differing in their stay-green characteristics confirmed the cultivar-specific regulation of six genes in agreement with their senescence behavior: the senescence regulator ANAC029, the anthocyanin synthesis-related genes ANS and DFR-like1, the ammonium transporter AMT1:4, the ureide transporter UPSS, and SPS1 involved in sucrose biosynthesis. The identified genes represent markers for the detection of cultivar-specific differences in N starvation-induced leaf senescence and can thus be employed as valuable tools in B. napus breeding. (C) 2015 Elsevier Ireland Ltd. All rights reserved. KW - Brassica napus KW - Genotypic differences KW - Leaf senescence KW - Molecular marker KW - N efficiency KW - Stay-green Y1 - 2015 U6 - https://doi.org/10.1016/j.plantsci.2014.11.018 SN - 0168-9452 VL - 233 SP - 174 EP - 185 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Parlitz, Steffi A1 - Kunze, Reinhard A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented. KW - Arabidopsis thaliana KW - Dark-induced senescence KW - Expression profiling KW - Regreening KW - Transcription factor Y1 - 2011 U6 - https://doi.org/10.1016/j.jplph.2011.02.001 SN - 0176-1617 VL - 168 IS - 12 SP - 1311 EP - 1319 PB - Elsevier CY - Jena ER -