TY - JOUR A1 - Wen, Xi A1 - Unger, Viktoria A1 - Jurasinski, Gerald A1 - Koebsch, Franziska A1 - Horn, Fabian A1 - Rehder, Gregor A1 - Sachs, Torsten A1 - Zak, Dominik A1 - Lischeid, Gunnar A1 - Knorr, Klaus-Holger A1 - Boettcher, Michael E. A1 - Winkel, Matthias A1 - Bodelier, Paul L. E. A1 - Liebner, Susanne T1 - Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions JF - Biogeosciences N2 - The rewetting of drained peatlands alters peat geochemistry and often leads to sustained elevated methane emission. Although this methane is produced entirely by microbial activity, the distribution and abundance of methane-cycling microbes in rewetted peatlands, especially in fens, is rarely described. In this study, we compare the community composition and abundance of methane-cycling microbes in relation to peat porewater geochemistry in two rewetted fens in northeastern Germany, a coastal brackish fen and a freshwater riparian fen, with known high methane fluxes. We utilized 16S rRNA high-throughput sequencing and quantitative polymerase chain reaction (qPCR) on 16S rRNA, mcrA, and pmoA genes to determine microbial community composition and the abundance of total bacteria, methanogens, and methanotrophs. Electrical conductivity (EC) was more than 3 times higher in the coastal fen than in the riparian fen, averaging 5.3 and 1.5 mS cm(-1), respectively. Porewater concentrations of terminal electron acceptors (TEAs) varied within and among the fens. This was also reflected in similarly high intra- and inter-site variations of microbial community composition. Despite these differences in environmental conditions and electron acceptor availability, we found a low abundance of methanotrophs and a high abundance of methanogens, represented in particular by Methanosaetaceae, in both fens. This suggests that rapid (re) establishment of methanogens and slow (re) establishment of methanotrophs contributes to prolonged increased methane emissions following rewetting. Y1 - 2018 U6 - https://doi.org/10.5194/bg-15-6519-2018 SN - 1726-4170 SN - 1726-4189 VL - 15 IS - 21 SP - 6519 EP - 6536 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Krause, Sascha A1 - Le Roux, Xavier A1 - Niklaus, Pascal A. A1 - Van Bodegom, Peter M. A1 - Lennon, Jay T. A1 - Bertilsson, Stefan A1 - Grossart, Hans-Peter A1 - Philippot, Laurent A1 - Bodelier, Paul L. E. T1 - Trait-based approaches for understanding microbial biodiversity and ecosystem functioning JF - Frontiers in microbiology N2 - In ecology, biodiversity-ecosystem functioning (BEE) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEE of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEE using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEE studies are often inadequate to unravel BEE relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEE relationships and thus generating systematic principles in microbial ecology and more generally ecology. KW - functional traits KW - ecosystem function KW - ecological theory KW - study designs KW - microbial diversity Y1 - 2014 U6 - https://doi.org/10.3389/fmicb.2014.00251 SN - 1664-302X VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER -