TY - JOUR A1 - Aichner, Bernhard A1 - Dubbert, David A1 - Kiel, Christine A1 - Kohnert, Katrin A1 - Ogashawara, Igor A1 - Jechow, Andreas A1 - Harpenslager, Sarah-Faye A1 - Hölker, Franz A1 - Nejstgaard, Jens Christian A1 - Grossart, Hans-Peter A1 - Singer, Gabriel A1 - Wollrab, Sabine A1 - Berger, Stella Angela T1 - Spatial and seasonal patterns of water isotopes in northeastern German lakes JF - Earth system science data : ESSD N2 - Water stable isotopes (delta O-18 and delta H-2) were analyzed in samples collected in lakes, associated with riverine systems in northeastern Germany, throughout 2020. The dataset (Aichner et al., 2021; https://doi.org/10.1594/PANGAEA.935633) is derived from water samples collected at (a) lake shores (sampled in March and July 2020), (b) buoys which were temporarily installed in deep parts of the lake (sampled monthly from March to October 2020), (c) multiple spatially distributed spots in four selected lakes (in September 2020), and (d) the outflow of Muggelsee (sampled biweekly from March 2020 to January 2021). At shores, water was sampled with a pipette from 40-60 cm below the water surface and directly transferred into a measurement vial, while at buoys a Limnos water sampler was used to obtain samples from 1 m below the surface. Isotope analysis was conducted at IGB Berlin, using a Picarro L2130-i cavity ring-down spectrometer, with a measurement uncertainty of < 0.15 parts per thousand (delta O-18) and < 0.0 parts per thousand (delta H-2). The data give information about the vegetation period and the full seasonal isotope amplitude in the sampled lakes and about spatial isotope variability in different branches of the associated riverine systems. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-1857-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 4 SP - 1857 EP - 1867 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Saini, Jeetendra A1 - Guenther, Franziska A1 - Aichner, Bernhard A1 - Mischke, Steffen A1 - Herzschuh, Ulrike A1 - Zhang, Chengjun A1 - Maeusbacher, Roland A1 - Gleixner, Gerd T1 - Climate variability in the past similar to 19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - We investigated 4.84-m-long sediment record spanning over the Late Glacial and Holocene from Lake Donggi Cona to be able to reconstruct circulation pattern on the Tibetan Plateau (TP). Presently, Lake Donggi Cona is located at the boundaries of Westerlies and Asian monsoon circulations in the northeastern TP. However, the exact timing and stimulating mechanisms for climatic changes and monsoon shifts in this region are still debated. We used a 19-ka-long stable isotope record of sedimentary n-alkanes to address this discrepancy by providing insights into paleohydrological conditions. The SD of nC(23) is influenced by lake water evaporation; the BD. values of sedimentary nC(29) are mainly controlled by moisture source and temperature changes. Long-chain n-alkanes dominate over the core whereas three mean clusters (i.e. microbial, aquatic and terrestrial) can be inferred. Multi-proxies suggest five major episodes in the history of Lake Donggi Cona. The Lake Donggi Cona record indicates that the Late Glacial(18.4-14.8 cal ka BP) was dominated by low productivity of mainly microbial and aquatic organisms. Relatively low delta D values suggest low temperatures and moist conditions eventually caused by stronger Westerlies, winter monsoon and melt-water influence. Likely, the shift (similar to 17.9 cal ka BP) from microbial to enhanced aquatic input suggests either a change from deep to shallow water lake or a break in local stratification. Between 14.8 and 13.0 cal ka BP, variable climatic conditions prevailed. Although the Westerlies weekend, the increase in temperature enhanced the permafrost and snow melting (displayed by a high sedimentary accumulation rate). Higher delta D values indicate increasingly arid conditions with higher temperatures which eventually lead to high evaporative conditions and lowest lake levels. Low vegetation cover and high erosion rates led to high sediment accumulation resulting in stratification followed by anoxia in the terminal lake. From 13.0 to 9.2 cal ka BP, lowered values of 813 along with high contents of terrestrial organic matter marked the early-Holocene warming indicating a further strengthening of summer precipitation and higher lake levels. A cooling trend was observed in the mid-Holocene between 9.2 and 3.0 cal ka BP accompanied by higher moisture availability (displayed by lowered SD values) caused by reduced evaporative conditions due to a drop in temperature and recovering Westerlies. After 3.0 cal ka BP, a decrease in lake productivity and cold and semi-arid conditions prevailed suggesting lower lake levels and reduced moisture from recycled air masses and Westerlies. We propose that the summer monsoon was the predominant moisture source during the Belling-Allered warm complex and early -Holocene followed by Westerlies in mid-to-late Holocene period. Stable carbon isotope values-32%o indicate the absence of C-4 -type vegetation in the region contradicting with their presence in the Lake Qinghai record. The 81) record from lake Donggi Cona highlights the importance of the interplay between Westerlies and summer monsoon circulation at this location, which is highly dynamic in northeastern plateau compared to the North Atlantic circulation and insolation changes. Consequently lake Donggi Cona might be an important anchor point for environmental reconstructions on the Tibetan Plateau. (C) 2017 The Authors. Published by Elsevier Ltd. KW - n-alkanes KW - Hydrogen isotopes (delta D) KW - Carbon isotopes (delta C-13) KW - Carbon preference index (CPI) KW - Westerlies KW - Continental air masses KW - Precipitation KW - Late Glacial and Holocene Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2016.12.023 SN - 0277-3791 VL - 157 SP - 129 EP - 140 PB - Elsevier CY - Oxford ER -