TY - GEN A1 - Raju, Rajarshi Roy A1 - Koetz, Joachim T1 - Inner Rotation of Pickering Janus Emulsions T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Janus droplets were prepared by vortex mixing of three non-mixable liquids, i.e., olive oil, silicone oil and water, in the presence of gold nanoparticles (AuNPs) in the aqueous phase and magnetite nanoparticles (MNPs) in the olive oil. The resulting Pickering emulsions were stabilized by a red-colored AuNP layer at the olive oil/water interface and MNPs at the oil/oil interface. The core–shell droplets can be stimulated by an external magnetic field. Surprisingly, an inner rotation of the silicon droplet is observed when MNPs are fixed at the inner silicon droplet interface. This is the first example of a controlled movement of the inner parts of complex double emulsions by magnetic manipulation via interfacially confined magnetic nanoparticles. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1249 KW - Janus droplets KW - Pickering emulsions KW - magnetic manipulation KW - gold nanoparticles KW - magnetite nanoparticles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-553628 SN - 1866-8372 IS - 1249 ER - TY - GEN A1 - Ihlenburg, Ramona A1 - Lehnen, Anne-Catherine A1 - Koetz, Joachim A1 - Taubert, Andreas T1 - Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1093 KW - cryogel KW - water treatment KW - dye removal KW - methyl orange KW - methylene blue KW - dye mixture Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-488987 SN - 1866-8372 IS - 1093 ER - TY - GEN A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Bargheer, Matias A1 - Schmitt, Clemens Nikolaus Zeno A1 - Poghosyan, Armen H. A1 - Shahinyanf, Aram A. A1 - Koetz, Joachim T1 - Spiked gold nanotriangles BT - Formation, characterization and applications in surface-enhanced Raman spectroscopy and plasmon-enhanced catalysis T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We show the formation of metallic spikes on the surface of gold nanotriangles (AuNTs) by using the same reduction process which has been used for the synthesis of gold nanostars. We confirm that silver nitrate operates as a shape-directing agent in combination with ascorbic acid as the reducing agent and investigate the mechanism by dissecting the contribution of each component, i.e., anionic surfactant dioctyl sodium sulfosuccinate (AOT), ascorbic acid (AA), and AgNO3. Molecular dynamics (MD) simulations show that AA attaches to the AOT bilayer of nanotriangles, and covers the surface of gold clusters, which is of special relevance for the spike formation process at the AuNT surface. The surface modification goes hand in hand with a change of the optical properties. The increased thickness of the triangles and a sizeable fraction of silver atoms covering the spikes lead to a blue-shift of the intense near infrared absorption of the AuNTs. The sponge-like spiky surface increases both the surface enhanced Raman scattering (SERS) cross section of the particles and the photo-catalytic activity in comparison with the unmodified triangles, which is exemplified by the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene (DMAB). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 829 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445568 SN - 1866-8372 IS - 829 ER - TY - GEN A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Klemke, Bastian A1 - Koetz, Joachim T1 - Ultralight magnetic aerogels from Janus emulsions T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 828 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445522 IS - 828 ER - TY - GEN A1 - Koetz, Joachim T1 - The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au³⁺ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4′-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1022 KW - undulated KW - spiked and crumble gold nanotriangles KW - SERS enhancement factor KW - dimerization of 4-nitrothiophenol KW - AOT bilayer KW - PEI coating Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-485172 SN - 1866-8372 IS - 1022 ER - TY - GEN A1 - Bourgat, Yannick A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Menzel, Henning T1 - Enzyme degradable polymersomes from chitosan-g-[poly-l-lysine-block-epsilon-caprolactone] copolymer T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The scope of this study includes the synthesis of chitosan-g-[peptide-poly-epsilon-caprolactone] and its self-assembly into polymeric vesicles employing the solvent shift method. In this way, well-defined core-shell structures suitable for encapsulation of drugs are generated. The hydrophobic polycaprolactone side-chain and the hydrophilic chitosan backbone are linked via an enzyme-cleavable peptide. The synthetic route involves the functionalization of chitosan with maleimide groups and the preparation of polycaprolactone with alkyne end-groups. A peptide functionalized with a thiol group on one side and an azide group on the other side is prepared. Thiol-ene click-chemistry and azide-alkyne Huisgen cycloaddition are then used to link the chitosan and poly-epsilon-caprolactone chains, respectively, with this peptide. For a preliminary study, poly-l-lysin is a readily available and cleavable peptide that is introduced to investigate the feasibility of the system. The size and shape of the polymersomes are studied by dynamic light scattering and cryo-scanning electron microscopy. Furthermore, degradability is studied by incubating the polymersomes with two enzymes, trypsin and chitosanase. A dispersion of polymersomes is used to coat titanium plates and to further test the stability against enzymatic degradation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1382 KW - chitosan KW - click chemistry KW - drug delivery system KW - enzyme KW - polymersomes KW - poly‐ ε ‐ caprolactone Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-566584 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Hess, Andreas A1 - Schlaad, Helmut A1 - Koetz, Joachim T1 - Temperature-triggered reversible breakdown of polymer-stabilized olive BT - silicone oil Janus emulsions T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - A one-step moderate energy vibrational emulsification method was successfully employed to produce thermo-responsive olive/silicone-based Janus emulsions stabilized by poly(N,N-diethylacrylamide) carrying 0.7 mol% oleoyl side chains. Completely engulfed emulsion droplets remained stable at room temperature and could be destabilized on demand upon heating to the transition temperature of the polymeric stabilizer. Time-dependent light micrographs demonstrate the temperature-induced breakdown of the Janus droplets, which opens new aspects of application, for instance in biocatalysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 751 KW - microgels KW - step Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436461 SN - 1866-8372 IS - 751 SP - 19271 EP - 19277 ER - TY - GEN A1 - Liebig, Ferenc A1 - Henning, Ricky A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Schmitt, Clemens Nikolaus Zeno A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Due to the enhanced electromagnetic field at the tips of metal nanoparticles, the spiked structure of gold nanostars (AuNSs) is promising for surface-enhanced Raman scattering (SERS). Therefore, the challenge is the synthesis of well designed particles with sharp tips. The influence of different surfactants, i.e., dioctyl sodium sulfosuccinate (AOT), sodium dodecyl sulfate (SDS), and benzylhexadecyldimethylammonium chloride (BDAC), as well as the combination of surfactant mixtures on the formation of nanostars in the presence of Ag⁺ ions and ascorbic acid was investigated. By varying the amount of BDAC in mixed micelles the core/spike-shell morphology of the resulting AuNSs can be tuned from small cores to large ones with sharp and large spikes. The concomitant red-shift in the absorption toward the NIR region without losing the SERS enhancement enables their use for biological applications and for time-resolved spectroscopic studies of chemical reactions, which require a permanent supply with a fresh and homogeneous solution. HRTEM micrographs and energy-dispersive X-ray (EDX) experiments allow us to verify the mechanism of nanostar formation according to the silver underpotential deposition on the spike surface in combination with micelle adsorption. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 769 KW - optical-properties KW - nanoparticles KW - sers KW - ultrafast KW - size KW - nanotriangles KW - nanoflowers KW - wavelength Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438743 SN - 1866-8372 IS - 769 SP - 23633 EP - 23641 ER - TY - GEN A1 - Broeker, Nina K. A1 - Kiele, Franziska A1 - Casjens, Sherwood R. A1 - Gilcrease, Eddie B. A1 - Thalhammer, Anja A1 - Koetz, Joachim T1 - In Vitro Studies of Lipopolysaccharide-Mediated DNA Release of Podovirus HK620 T2 - Viruses N2 - Gram-negative bacteria protect themselves with an outermost layer containing lipopolysaccharide (LPS). O-antigen-specific bacteriophages use tailspike proteins (TSP) to recognize and cleave the O-polysaccharide part of LPS. However, O-antigen composition and structure can be highly variable depending on the environmental conditions. It is important to understand how these changes may influence the early steps of the bacteriophage infection cycle because they can be linked to changes in host range or the occurrence of phage resistance. In this work, we have analyzed how LPS preparations in vitro trigger particle opening and DNA ejection from the E. coli podovirus HK620. Fluorescence-based monitoring of DNA release showed that HK620 phage particles in vitro ejected their genome at velocities comparable to those found for other podoviruses. Moreover, we found that HK620 irreversibly adsorbed to the LPS receptor via its TSP at restrictive low temperatures, without opening the particle but could eject its DNA at permissive temperatures. DNA ejection was solely stimulated by LPS, however, the composition of the O-antigen dictated whether the LPS receptor could start the DNA release from E. coli phage HK620 in vitro. This finding can be significant when optimizing bacteriophage mixtures for therapy, where in natural environments O-antigen structures may rapidly change. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 469 KW - O-antigen specific phage KW - podovirus KW - HK620 KW - lipopolysaccharide KW - in vitro particle opening KW - tailspike protein Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417493 ER - TY - GEN A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 698 KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427197 SN - 1866-8372 IS - 698 ER -