TY - JOUR A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Farhan, Muhammad A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Design and fabrication of fiber mesh actuators JF - Applied materials today N2 - Soft actuator performance can be tuned by chemistry or mechanical manipulation, but this adjustability is limited especially in view of their growing technological relevance. Inspired from textile engineering, we designed and fabricated fiber mesh actuators and introduced new features like anisotropic behavior and soft-tissue like elastic deformability. Design criteria for the meshes are the formation of fiber bundles, the angle between fiber bundles in different stacked layers and covalent crosslinks forming within and between fibers at their interfacial contact areas. Through crosslinking the interfiber bond strength increased from a bond transmitting neither axial nor rotational loads (pin joint) to a bond strength capable of both (welded joint). For non-linear elastic stiffening, stacked fiber bundles with four embracing fibers were created forming microstructural rhombus shapes. Loading the rhombus diagonally allowed generation of “soft tissue”-like mechanics. By adjustment of stacking angles, the point of strong increase in stress is tuned. While the highest stresses are observed in aligned and crosslinked fiber mats along the direction of the fiber, the strongest shape-memory actuation behavior is found in randomly oriented fiber mats. Fiber mesh actuators controlled by temperature are of high significance as soft robot skins and as for active patches supporting tissue regeneration. Y1 - 2022 U6 - https://doi.org/10.1016/j.apmt.2022.101562 SN - 2352-9407 VL - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Farhan, Muhammad A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Origami hand for soft robotics driven by thermally controlled polymeric fiber actuators JF - MRS communications / a publication of the Materials Research Society N2 - Active fibers can serve as artificial muscles in robotics or components of smart textiles. Here, we present an origami hand robot, where single fibers control the reversible movement of the fingers. A recovery/contracting force of 0.2 N with a work capacity of 0.175 kJ kg(-1) was observed in crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) fibers, which could enable the bending movement of the fingers by contraction upon heating. The reversible opening of the fingers was attributed to a combination of elastic recovery force of the origami structure and crystallization-induced elongation of the fibers upon cooling. KW - Robotics KW - Polymer KW - Fiber KW - Actuation KW - Shape-memory Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00058-4 SN - 2159-6859 SN - 2159-6867 VL - 11 IS - 4 SP - 476 EP - 482 PB - Springer CY - Berlin ER - TY - JOUR A1 - Farhan, Muhammad A1 - Chaudhary, Deeptangshu A1 - Nöchel, Ulrich A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)] JF - Macromolecular materials and engineering N2 - Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies. KW - artificial muscles KW - fiber actuators KW - resistive heating KW - shape‐memory polymer actuators KW - soft robotics Y1 - 2020 U6 - https://doi.org/10.1002/mame.202000579 SN - 1438-7492 SN - 1439-2054 VL - 306 IS - 2 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Farhan, Muhammad A1 - Chaudhary, Deeptangshu A1 - Nöchel, Ulrich A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)] T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1375 KW - artificial muscles KW - fiber actuators KW - resistive heating KW - shape‐memory polymer actuators KW - soft robotics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571679 SN - 1866-8372 IS - 2 ER - TY - THES A1 - Farhan, Muhammad T1 - Multifunctional reprogrammable actuators based on polymer networks with crystallizable segments N2 - Soft polymeric materials, which can change their shape reversibly in response to external stimuli, can serve as actuating components in robotic systems. Besides electroactive polymers (EAP), hydrogels and liquid crystalline elastomers (LCE), crosslinked crystallizable shape-memory polymers networks have been introduced recently as reprogrammable thermo-reversible actuators. The integration of additional functions in such materials will lead to multifunctional polymeric actuators, which meet the complex requirements of modern robotic applications. The primary aim of this thesis was to achieve multifunctional reprogrammable thermo-reversible actuators based on thermoplastic polymers. Here, three different actuators providing additional functionalities such as surface modification capability (i), self-healing capability (ii) or a tailorable non-response function enabling noncontinuous multi-step motions (iii) were realized. At first, it was hypothesized that surface modifiable polymeric actuators (i) can be achieved by crosslinking of crystallizable thermoplastic terpolymers having reactive moieties, where subsequent thermomechanical programming enables reversible actuations while the sustained reactive groups allow post surface modification. For the second actuator type (ii) it was hypothesized that self-healing during reprogramming of polymeric actuators prepared by crosslinking of crystallizable linear homopolymers, can be achieved by adjusting the amount of freely interpenetrating extractable polymer moieties. Finally, it was hypothesized that thermo-reversible actuators providing a non-response function (iii) and thus enable multistep motions upon continuous normal stimulation, can be achieved by a crosslinked blend of two thermoplastic polymers with co-continuous morphology having a well-separated melting and crystallization transitions. In addition, these actuators can be physically reprogrammed by heating above all melting transitions to provide a different actuating shape. In this study, surface functionalizable actuators were realized from crosslinked poly[(ethylene)-co-(ethyl acrylate)-co-(maleic anhydride)] (cPEEAMA) based networks. Here crystallizable polyethylene (PE) segments should serve as actuation segments, ethyl acrylate (EA) provides elasticity to the system required for deformation, while reactive maleic anhydride (MA) will be used as chemically modifiable entities for post surface modification. Networks with varied crosslink density were prepared and its effect on thermomechanical properties as well as actuation performance was analyzed. Cyclic thermomechanical experiments were employed to investigate the actuation capability, which revealed a reversible actuation (ε׳rev) between 5 and 15%. Fourier-transform infrared spectroscopy (FTIR) measurements confirmed that MA groups were sustained at the sample surface after processing and programming, which could be modified by reaction with ethylene diamine. Such amine functionalization allows the attachment of bioactive molecules to the actuator surface, which might provide a route to actuating substrates for biotechnology. Self-healable actuating materials were realized by poly(ε-caprolactone) (PCL) polymer networks with extractable linear PCL fractions of 5 to 60 wt%. A detailed evaluation of the actuation capabilities by cyclic experiments revealed the highest reversible change in strain of Δε = 24% for the cPCL network with 30 wt% of linear polymer. The thermal treatment of damaged samples resulted in the healing of the network when heated to 80 °C. Here a linear polymer fraction ≥ 30 wt% was necessary to achieve a self-healing efficiency of ≥ 50%. The application of such high temperatures erases the programmed actuator shape and at the same time allows to reprogram a new actuating shape. Such sustainable actuators with self-healing function are of great interest for future robotic devices. Afore mentioned actuators operate continuously between two shapes and their movements can only be interrupted when the temperature is stopped. To overcome this limitation, noncontinuously responding actuators enabling multi-step actuation were realized from crosslinked blend networks prepared from PCL and poly[(ethylene)-co-(vinyl acetate)] (PEVA). These polymers (PCL and PEVA) were selected due to their immiscible character, where crystallizable PE and PCL segments provide two different actuation units, while vinyl acetate (VA) segment enabled sufficient elasticity of the system. A gap of 20 K in the melting and crystallization temperature of PE and PCL was achieved by selecting PEVA with 5 wt% VA content (cPCL-PEVA5) providing a co-continuous phase morphology. Cyclic thermomechanical investigations were employed to investigate noncontinuous actuation, which revealed a high Δε = 25% with a similar contribution from PCL and PE actuation units with a non-response region in the temperature range from 50 to 71 °C in heating step and 30 to 60 °C in cooling step. The actuation related to PCL part changed from 13 to 2% by altering the heating and cooling rates from 3 to 10 K·min-1. Free-standing reversible noncontinuous actuation was realized by rotating demonstrator which exhibits reversible angle change in a custom-made setup. For this purpose, cPCL-PEVA5 stripe was programmed by twisting and reversible rotational actuation was realized from 0 to 180° while pausing in the 90° position during non-response. These blends can be physically programmed to perform reversible noncontinuous actuations, while the programmed geometry can be erased by heating it to temperature above all melting transitions. By physically reprogramming of the material various different actuation modes can be obtained. Such a noncontinuous actuator would be relevant for designing interruptive actuating soft robots at continuous trigger signals. N2 - Weiche, Polymer-basierte Materialien, die ihre Form in Abhängigkeit eines äußeren Reizes reversibel ändern können, können als bewegliche Bauteile in Robotern Verwendung finden. Neben elektro-aktiven Polymeren, Hydrogelen und flüssigkristallinen Elastomeren wurden vernetzte kristallisierbare Polymernetzwerke mit Formgedächtnisfunktion als reprogrammierbare, temperatur-abhängige Aktuatoren beschrieben. Das Integrieren von zusätzlichen Funktionen in derartige Materialien führt zu neuen multifunktionalen Aktuatoren, die in der Lage sein sollten die immer komplexer werdenden Anforderungen an weiche Roboter in zukünftigen Anwendungsfelder erfüllen zu können. Das Ziel dieser Arbeit war es multifunktionale, reprogrammierbare thermo-sensitive Aktuatoren auf Basis von thermoplastischen Polymeren zu realisieren. Hierfür wurden drei unterschiedliche multifunktionale Aktuator-Typen mit zusätzlichen Funktionen hergestellt und untersucht. Als zusätzliche Funktionen wurden: (i) die Möglichkeit der Oberflächenmodifikation, (ii) Selbstheilung der Materialien und (iii) einstellbare diskontinuierliche Bewegungen erforscht. Zu Beginn wurden Aktuatoren betrachtet, die eine modifizierbaren Oberfläche (i) aufweisen. Durch Vernetzung von kristallisierbaren Thermoplasten, die reaktive, funktionelle Gruppen beinhalten wurden entsprechende Materialien hergestellt. Während die reversible Bewegungsinformation über eine thermomechanische Behandlung im Material gespeichert wird, erfolgt die Funktionalisierung mittels chemischer Behandlung an der Oberfläche nachträglich. Der zweite Ansatz (ii) verfolgt das Ziel den Aktuator mit selbstheilende Eigenschaften auszustatten. Dabei soll über freie, unvernetzte lineare Polymerketten innerhalb des Polymernetzwerkes, während der Reprogrammierungsphase eine Reparatur von zuvor eingebrachten oder entstandenen Schäden erfolgen. Im letzten Teilprojekt soll ein diskontinuierliches Bewegungsprofil mit einem polymeren Aktuator umgesetzt werden. Hierfür wird ein kovalent vernetztes Copolymernetzwerk aus einer Mischung von zwei Thermoplasten mit deutlich getrennten thermischen Übergängen (Schmelzbereich und Kristallisationsbereich) hergestellt, welches bei kontinuierlichem Heizen und Kühlen eine pausierend Bewegung ausführt z.B. eine unterbrochene Längenänderung (oder auch anderen Bewegung). Eine Gemeinsamkeit für alle untersuchten Materialien ist deren Fähigkeit zur Reprogrammierung in unterschiedliche Bewegungsformen über ein rein physikalisches (thermomechanisches) Verfahren wobei alle kristallinen Bereiche aufgeschmolzen werden. Im Rahmen der Oberflächen-modifizierbaren Aktuatoren wurden Netzwerke aus dem Terpolymer, Poly[(ethylen)-co-(ethylacrylat)-co-(maleinsäureanhydrid)] hergestellt. Der kristallisierbare Anteil von Polyethylen (PE) dient als Aktuator-Domäne, Ethylacrylat unterstützt die Deformierbarkeit des Polymernetzwerkes und Maleinsäureanhydrid ermöglicht die nachträgliche Funktionalisierung an der Oberfläche. Netzwerke mit unterschiedlichen Vernetzungsdichten wurden bezüglich ihrer thermomechanischen Eigenschaften und ihrer Aktuator-Performance untersucht und zeigten in zyklischen Heiz-Kühl-Experimenten reversible Formänderungen zwischen 5 und 15%. Messungen mit dem Fourier-Transform-Infrarotspektrometer zeigen die Beständigkeit der Maleinsäureanhydrid-Gruppen auch nach der Vernetzung und der thermomechanischen Behandlung. Durch chemische Reaktion der Maleinsäureanhydrid Gruppen mit Ethylendiamin wurden Amin-Funktionalitäten an der Oberfläche etabliert. Diese ermöglichen die kovalente Anknüpfung von bioaktiven Molekülen auf dem Aktuator, was insbesondere für Anwendungen in der Biotechnologie relevant sein könnte. Selbstheilende Aktuatoren wurden am Beispiel von Netzwerken aus Poly(ε-Caprolacton) (PCL) erforscht. Hier wurden Materialien mit unterschiedliche Anteilen an extrahierbaren Polymerketten von bis zu 60 Gew.-% hergestellt und untersucht. Diese Untersuchungen zeigten, dass die höchsten reversiblen Bewegungsänderungen für Netzwerke mit ein Anteil von 30 Gew.-% an unvernetzten PCL erzielt werden können. Ein Erwärmen von beschädigten Probenkörpern auf 80 °C ermöglichte das „Heilen“, wobei ein Anteil von ≥ 30 Gew.-% an freien Polymerketten nötig ist um hohe Heilungs-Effizienz zu erreichen. Die Behandlung bei 80 °C erlaubt neben dem Schließen von Beschädigungen auch die Programmierung einer anderen Bewegungsform des Prüfkörpers. Dieser Typ von nachhaltigen Aktuatoren könnte zukünftig neuartige Technologien ermöglichen. Alle vorher genannten Beispiele haben gemeinsam, dass sie ihre Form zwischen zwei definierten Zuständen über eine gleichmäßige Bewegung ändern bzw. diese Bewegung nur unterbrochen werden kann, wenn die Temperatur angehalten wird. Um diese Einschränkung zu überwinden wurden eine Mischung aus zwei Polymer-Systeme, PCL und Poly[(Ethylen)-co-(Vinylacetat)] (PEVA) hergestellt und vernetzt. Durch ihre geringe Mischbarkeit phasenseparieren PCL und PEVA und es entsteht ein Material mit co-kontinuierlicher Morphologie. Die entsprechenden Schmelz- und Kristallisationstemperaturen der beiden Komponenten PCL und PEVA weisen eine Differenz von gut 20 °C auf. In zyklischen Heiz-Kühl-Experimenten konnten reversible Formänderungen von bis zu 25% erzielt werden, wobei die Beiträge der beiden kristallisierbaren PCL und PEVA Domänen ähnlich sind. Während des Heizens findet im Temperaturbereich zwischen 50 und 71 °C keine Formänderung statt und gleichermaßen beobachtet man beim Kühlen zwischen 60 und 30 °C keine Bewegung. Diese Beobachtung lässt sich gut durch den Abstand der Schmelztemperaturen der beiden Polymere PCL und PEVA erklären. Das Aufschmelzen und die Kristallisation von Polymeren sind abhängig von den angewendeten Heiz-/Kühlraten. Insbesondere für den PCL-Anteil im Material kann durch die Änderung der Heiz-/Kühlraten sowohl die mehrstufige Bewegungsperformance als auch der Temperaturbereich in dem keine Bewegung stattfindet beeinflusst werden. Um die Vielfältigkeit der Formänderung von Aktuatoren zu demonstrieren wurden Probenkörper auch verdrillt und deren reversible Rotation untersucht, wobei eine der Längenänderung vergleichbare Performance beobachtet wurde. Derartige Aktuatoren, die eine Unterbrechung in ihrer Bewegung aufweisen, bei einem kontinuierlichen Steuerimpulses, könnten Anwendung im Bereich der weichen Robotik finden in denen diskontinuierliche Bewegungsabläufe gefordert sind. KW - shape-memory polymers KW - soft actuators KW - thermoplastic polymers KW - Formgedächtnispolymere KW - weiche Aktuatoren KW - thermoplastischen Polymere Y1 - 2019 ER - TY - JOUR A1 - Farhan, Muhammad A1 - Rudolph, Tobias A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(epsilon-caprolactone) Networks and Enable Self-Healing JF - Polymers N2 - Crosslinking of thermoplastics is a versatile method to create crystallizable polymer networks, which are of high interest for shape-memory actuators. Here, crosslinked poly(epsilon-caprolactone) thermosets (cPCLs) were prepared from linear starting material, whereby the amount of extractable polymer was varied. Fractions of 5-60 wt % of non-crosslinked polymer chains, which freely interpenetrate the crosslinked network, were achieved leading to differences in the resulting phase of the bulk material. This can be described as "sponge-like" with open or closed compartments depending on the amount of interpenetrating polymer. The crosslinking density and the average network chain length remained in a similar range for all network structures, while the theoretical accessible volume for reptation of the free polymer content is affected. This feature could influence or introduce new functions into the material created by thermomechanical treatment. The effect of interpenetrating PCL in cPCLs on the reversible actuation was analyzed by cyclic, uniaxial tensile tests. Here, high reversible strains of up to Delta epsilon = 24% showed the enhanced actuation performance of networks with a non-crosslinked PCL content of 30 wt % resulting from the crystal formation in the phase of the non-crosslinked PCL and co-crystallization with network structures. Additional functionalities are reprogrammability and self-healing capabilities for networks with high contents of extractable polymer enabling reusability and providing durable actuator materials. KW - shape-memory polymer actuators KW - soft actuators KW - self-healing KW - poly(epsilon-caprolactone) KW - thermoplastics Y1 - 2018 U6 - https://doi.org/10.3390/polym10030255 SN - 2073-4360 VL - 10 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Farhan, Muhammad A1 - Rudolph, Tobias A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Torsional Fiber Actuators from Shape-memory Polymer JF - MRS Advances N2 - Humanoid robots, prosthetic limbs and exoskeletons require soft actuators to perform their primary function, which is controlled movement. In this wont we explored whether crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) fibers, with different vinyl acetate (VA) content can serve as torsional fiber actuators. exhibiting temperature controlled reversible rotational changes. Broad melting transitions ranging from 50 to 90 degrees C for cPEVA18-165 or from 40 to 80 degrees C for cPEVA28-165 fibers in combination with complete crystallization at temperatures around 10 degrees C make them suitable actuating materials with adjustable actuation temperature ranges between 10 and 70 degrees C during repetitive cooling and heating. The obtained fibers exhibited a circular cross section with diameters around 0.4 +/- 0.1 mm, while a length of 4 cm was employed for the investigation of reversible rotational actuation after programming by twist insertion using 30 complete rotations at a temperature above melting transition. Repetitive heating and cooling between 10 to 60 degrees C or 70 degrees C of one-end-tethered programmed fibers revealed reversible rotations and torsional force. During cooling 3 +/- 1 complete rotations (Delta theta(r) = + 1080 +/- 360 degrees) in twisting direction were observed, while 4 +/- 1 turns in the opposite direction (Delta theta(r) = - 1440 +/- 1360 degrees) were found during heating. Such torsional fiber actuators, which are capable of approximately one rotation per cm fiber length, can serve as miniaturized rotary motors to provide rotational actuation in futuristic humanoid robots. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.621 SN - 2059-8521 VL - 3 IS - 63 SP - 3861 EP - 3868 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Farhan, Muhammad A1 - Rudolph, Tobias A1 - Nöchel, Ulrich A1 - Yan, Wan A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Noncontinuously Responding Polymeric Actuators JF - ACS applied materials & interfaces N2 - Reversible movements of current polymeric actuators stem from the continuous response to signals from a controlling unit, and subsequently cannot be interrupted without stopping or eliminating the input trigger. Here, we present actuators based on cross-linked blends of two crystallizable polymers capable of pausing their movements in a defined manner upon continuous cyclic heating and cooling. This noncontinuous actuation can be adjusted by varying the applied heating and cooling rates. The feasibility of these devices for technological applications was shown in a 140 cycle experiment of free-standing noncontinuous shape shifts, as well as by various demonstrators. KW - soft robotics KW - polymer actuators KW - thermo-sensitivity KW - shape shifting materials KW - crystallization behavior Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b11316 SN - 1944-8244 VL - 9 SP - 33559 EP - 33564 PB - American Chemical Society CY - Washington ER -