TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schirrmeister, Lutz A1 - Schwamborn, Georg A1 - Herzschuh, Ulrike T1 - The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data JF - Genes N2 - Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns. KW - sedaDNA KW - metabarcoding KW - trnL KW - single-nucleotide polymorphism (SNP) KW - treeline KW - MIS 5 to 1 KW - permafrost deposits KW - radiocarbon ages KW - palaeoenvironment KW - Larix Y1 - 2017 U6 - https://doi.org/10.3390/genes8100273 SN - 2073-4425 VL - 8 IS - 10 SP - 273 PB - MDPI CY - Basel ER - TY - GEN A1 - Epp, Laura Saskia A1 - Kruse, Stefan A1 - Kath, Nadja J. A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Tiedemann, Ralph A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1052 KW - ecological genetics KW - ecological modelling KW - palaeoecology KW - plant ecology KW - climate change KW - introgression KW - temperature KW - treeline KW - vegetation KW - mitochondrial haplotypes KW - Siberian larch KW - larch species KW - range shifts KW - vegetation-climate feedbacks KW - ecosystems KW - impacts KW - dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468352 SN - 1866-8372 IS - 1052 ER - TY - JOUR A1 - Kruse, Stefan A1 - Kolmogorov, Aleksey I. A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia JF - Ecology and evolution N2 - The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures. KW - adaptation KW - clonal growth KW - growth rate KW - Larix KW - leading edge KW - treeline KW - migration Y1 - 2020 U6 - https://doi.org/10.1002/ece3.6660 SN - 2045-7758 VL - 10 IS - 18 SP - 10017 EP - 10030 PB - Wiley CY - Hoboken ER - TY - THES A1 - Shevtsova, Iuliia T1 - Recent and future vegetation change in the treeline region of Chukotka (NE Russia) inferred from field data, satellite data and modelling N2 - Vegetation change at high latitudes is one of the central issues nowadays with respect to ongoing climate changes and triggered potential feedback. At high latitude ecosystems, the expected changes include boreal treeline advance, compositional, phenological, physiological (plants), biomass (phytomass) and productivity changes. However, the rate and the extent of the changes under climate change are yet poorly understood and projections are necessary for effective adaptive strategies and forehanded minimisation of the possible negative feedbacks. The vegetation itself and environmental conditions, which are playing a great role in its development and distribution are diverse throughout the Subarctic to the Arctic. Among the least investigated areas is central Chukotka in North-Eastern Siberia, Russia. Chukotka has mountainous terrain and a wide variety of vegetation types on the gradient from treeless tundra to northern taiga forests. The treeline there in contrast to subarctic North America and north-western and central Siberia is represented by a deciduous conifer, Larix cajanderi Mayr. The vegetation varies from prostrate lichen Dryas octopetala L. tundra to open graminoid (hummock and non-hummock) tundra to tall Pinus pumila (Pall.) Regel shrublands to sparse and dense larch forests. Hence, this thesis presents investigations on recent compositional and above-ground biomass (AGB) changes, as well as potential future changes in AGB in central Chukotka. The aim is to assess how tundra-taiga vegetation develops under changing climate conditions particularly in Fareast Russia, central Chukotka. Therefore, three main research questions were considered: 1) What changes in vegetation composition have recently occurred in central Chukotka? 2) How have the above-ground biomass AGB rates and distribution changed in central Chukotka? 3) What are the spatial dynamics and rates of tree AGB change in the upcoming millennia in the northern tundra-taiga of central Chukotka? Remote sensing provides information on the spatial and temporal variability of vegetation. I used Landsat satellite data together with field data (foliage projective cover and AGB) from two expeditions in 2016 and 2018 to Chukotka to upscale vegetation types and AGB for the study area. More specifically, I used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI) and Normalised Difference Snow Index (NDSI)) and constrained ordination (Redundancy analysis, RDA) for further k-means-based land-cover classification and general additive model (GAM)-based AGB maps for 2000/2001/2002 and 2016/2017. I also used Tandem-X DEM data for a topographical correction of the Landsat satellite data and to derive slope, aspect, and Topographical Wetness Index (TWI) data for forecasting AGB. Firstly, in 2016, taxa-specific projective cover data were collected during a Russian-German expedition. I processed the field data and coupled them with Landsat spectral Indices in the RDA model that was used for k-means classification. I could establish four meaningful land-cover classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra and (4) prostrate herb tundra and barren areas, and accordingly, I produced the land cover maps for 2000/2001/2002 and 2016/20017. Changes in land-cover classes between the beginning of the century (2000/2001/2002) and the present time (2016/2017) were estimated and interpreted as recent compositional changes in central Chukotka. The transition from graminoid tundra to forest tundra and shrub tundra was interpreted as shrubification and amounts to a 20% area increase in the tundra-taiga zone and 40% area increase in the northern taiga. Major contributors of shrubification are alder, dwarf birch and some species of the heather family. Land-cover change from the forest tundra and shrub tundra class to the larch closed-canopy forest class is interpreted as tree infilling and is notable in the northern taiga. We find almost no land-cover changes in the present treeless tundra. Secondly, total AGB state and change were investigated for the same areas. In addition to the total vegetation AGB, I provided estimations for the different taxa present at the field sites. As an outcome, AGB in the study region of central Chukotka ranged from 0 kg m-2 at barren areas to 16 kg m-2 in closed-canopy forests with the larch trees contributing the highest. A comparison of changes in AGB within the investigated period from 2000 to 2016 shows that the greatest changes (up to 1.25 kg m 2 yr 1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB within the 15 years from 2002 to 2017. In the third manuscript, potential future AGB changes were estimated based on the results of simulations of the individual-based spatially explicit vegetation model LAVESI using different climate scenarios, depending on Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5 and RCP 8.5 with or without cooling after 2300 CE. LAVESI-based AGB was simulated for the current state until 3000 CE for the northern tundra-taiga study area for larch species because we expect the most notable changes to occur will be associated with forest expansion in the treeline ecotone. The spatial distribution and current state of tree AGB was validated against AGB field data, AGB extracted from Landsat satellite data and a high spatial resolution image with distinctive trees visible. The simulation results are indicating differences in tree AGB dynamics plot wise, depending on the distance to the current treeline. The simulated tree AGB dynamics are in concordance with fundamental ecological (emigrational and successional) processes: tree stand formation in simulated results starts with seed dispersion, tree stand establishment, tree stand densification and episodic thinning. Our results suggest mostly densification of existing tree stands in the study region within the current century in the study region and a lagged forest expansion (up to 39% of total area in the RCP 8.5) under all considered climate scenarios without cooling in different local areas depending on the closeness to the current treeline. In scenarios with cooling air temperature after 2300 CE, forests stopped expanding at 2300 CE (up to 10%, RCP 8.5) and then gradually retreated to their pre-21st century position. The average tree AGB rates of increase are the strongest in the first 300 years of the 21st century. The rates depend on the RCP scenario, where the highest are as expected under RCP 8.5. Overall, this interdisciplinary thesis shows a successful integration of field data, satellite data and modelling for tracking recent and predicting future vegetation changes in mountainous subarctic regions. The obtained results are unique for the focus area in central Chukotka and overall, for mountainous high latitude ecosystems. N2 - Die Veränderung der Vegetation in den hohen Breiten ist heutzutage eines der zentralen Themen im Hinblick auf den anhaltenden Klimawandel und hat potenziell auslösende Rückkopplungen. In den Ökosystemen der hohen Breiten umfassen die erwarteten Veränderungen das Fortschreiten der borealen Baumgrenze, sowie kompositorische, phänologische, physiologische, Biomassen- (Phytomasse) und Produktivitätsveränderungen. Die Geschwindigkeit und das Ausmaß der Veränderungen im Rahmen des Klimawandels sind jedoch noch wenig verstanden, und Projektionen sind für wirksame Anpassungsstrategien und eine vorausschauende Minimierung möglicher negativer Rückkopplungen erforderlich. Die Vegetation selbst und die Umweltbedingungen, die bei ihrer Entwicklung und Verbreitung eine große Rolle spielen, sind in der gesamten Subarktis bis zur Arktis unterschiedlich. Zu den am wenigsten untersuchten Gebieten gehört Zentral-Tschukotka, in Nordost-Sibirien, Russland. Tschukotka hat gebirgiges Terrain und eine weite Bandbreite von Vegetationstypen entlang des Gradienten von der baumlosen Tundra bis zu den nördlichen Taiga-Wäldern. Die Baumgrenze dort wird im Gegensatz zum subarktischen Nordamerika sowie Nordwest- und Mittelsibirien durch eine laubabwerfende Nadelbaumart, Larix cajanderi Mayr, aufgebaut. Die Vegetation variiert von Tundra mit Flechten und Dryas octopetala L. über offene graminoide (Horstgras und nicht Horstgras) Tundra und hohe Pinus pumila (Pall.) Regel Strauchlandschaften zu lockeren Lärchenbeständen bis zu dichten Lärchenwäldern. Somit werden in meiner Dissertation Untersuchungen zu den jüngsten Veränderungen der Vegetationszusammensetzung und der oberirdischen Biomasse (aus dem Englischen above-ground biomass, bzw. AGB), sowie zu potenziellen zukünftigen Veränderungen der AGB vorgestellt. Das Ziel meiner Arbeit ist es abzuschätzen, wie sich die Tundra-Taiga-Vegetation unter Klimawandel entwickelt, insbesondere in Fernost Russland, Zentral-Tschukotka. Daher wurden drei Hauptforschungsfragen berücksichtigt: 1) Welche Veränderungen in der Vegetationszusammensetzung sind in den letzten Jahrzehnten in Zentral-Tschukotka aufgetreten? 2) Wie haben sich die AGB-Raten und die Verteilung der oberirdischen Biomasse in Zentral-Tschukotka verändert? 3) Wie sind die räumlichen Dynamiken und Änderungsraten der Baum-AGB in dem kommenden Jahrtausend in der nördlichen Tundra-Taiga in Zentral-Tschukotka? Fernerkundung liefert Informationen über die räumliche und zeitliche Vegetationsvariabilität. Ich habe Landsat-Satellitendaten zusammen mit Felddaten (Projektive Vegetationsbedeckung und AGB) von zwei Expeditionen in den Jahren 2016 und 2018 nach Tschukotka verwendet, um Vegetationstypen und AGB für das Untersuchungsgebiet räumlich abzubilden. Insbesondere habe ich die Landsat-Spektralindizes (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) und Normalized Difference Snow Index (NDSI)) und eine Ordination mit Randbedingungen (Redundanzanalyse, RDA) verwendet, um eine Land-Klassifizierung mittels der k-means Methode zu entwickeln, und AGB-Karten mittels des General Additive Model (GAM) für 2000/2001/2002 und 2016/2017 zu erstellen. Außerdem verwendete ich Tandem-X-DEM-Daten, um die Landsat-Satellitendaten topografisch zu korrigieren und um die Hangneigung-, Hangaspekt- und TWI- (Topographical Wetness Index) Daten für die Vorhersage von AGB abzuleiten. Auf einer russisch-deutschen Expedition im Jahr 2016 wurden Vegetationsdaten erhoben. Ich prozessierte die Felddaten zu taxaspezifischen-projektiven Vegetationsbedeckungsdaten. Ich habe die taxaspezifisch-projektive Vegetationsbedeckung mit Landsat-Spektralindizes im RDA-Modell gekoppelt, das für die k-means-Klassifizierung verwendet wurde. Ich konnte vier repräsentative Landbedeckungsklassen einrichten: (1) Lärchen-Wald mit geschlossenem Blätterdach, (2) Waldtundra und Strauch-Tundra, (3) graminoide Tundra und (4) Kräutertundra und vegetationsarme Gebiete. Dementsprechend prozessierte ich dann die Landbedeckungskarten für 2000/2001/2002 und 2016/20017. Ich ermittelte die Änderungen der Landbedeckungsklassen zwischen dem Beginn des Jahrhunderts (2000/2001/2002) und der Gegenwart (2016/2017) und konnte sie als aktuelle Kompositionsänderungen in der Vegetation von Zentral-Tschukotka interpretieren. Die Transformation von der graminoiden Tundra zur Waldtundra oder zur Strauch-Tundra habe ich als Prozess der Strauchbildung interpretiert, die einer Flächenvergrößerung von 20% in der Tundra-Taiga Zone und einer Flächenvergrößerung von 40% in der nördlichen Taiga entspricht. Hauptakteure der Strauchung sind Erle, Zwergbirke und einige Arten der Heidekrautfamilie. Der Landbedeckungswechsel von der Waldtundra- und Strauch-Tundra-Klasse zur Klasse des Lärchen-Waldes mit geschlossenen Blätterdach wird als eine Verdichtung des Baumbestandes interpretiert und ist in der nördlichen Taiga bemerkenswert. In der heutigen baumlosen Tundra finden wir fast keine Landbedeckungsänderungen. Im zweiten Projekt bestimmte ich den Gesamt-AGB-Zustand und die gesamte AGB-Veränderung für dieselben Regionen in Zentral-Chukotka. Zusätzlich zur gesamten AGB lieferte ich Schätzungen für die verschiedenen Taxa, die an den Feldstandorten vorhanden sind. Als Ergebnis lag die AGB in der Untersuchungsregion von Zentral-Tschukotka zwischen 0 kg m-2 in vegetationsarmen Gebieten und 16 kg m-2 in den Wäldern mit geschlossenem Blätterdach mit dem größten Anteil von Lärchen. Ein Vergleich der Veränderungen der AGB im Untersuchungszeitraum von 2000 bis 2016 zeigt, dass die größten Veränderungen (bis zu 1,25 kg m-2 Jahr-1) in der nördlichen Taiga und in den Gebieten auftraten, in denen sich die Landbedeckung hin zu einen Lärchenwald mit geschlossenen Blätterdach änderte. Unsere Schätzungen deuten auf einen allgemeinen Anstieg der gesamten AGB in der untersuchten Tundra-Taiga und der nördlichen Taiga hin. Im Gegensatz zeigte die Tundra innerhalb der 15 Jahre von 2002 bis 2017 keine Hinweise auf eine Veränderung der AGB. Im dritten Projekt wurden potenzielle zukünftige Änderungen der oberirdischen Biomasse (AGB) basierend auf den Ergebnissen von Simulationen des individuell basierten räumlich expliziten Vegetationsmodells LAVESI unter Verwendung verschiedener Klimaszenarien, abhängig von RCP (Representative Concentration Pathways) 2.6, RCP 4.5 und RCP 8.5 (mit und ohne die Temperaturminderung nach den 2300 CE), geschätzt. Die LAVESI-basierte AGB wurde für den aktuellen Zustand bis 3000 CE für Lärchen-AGB simuliert, da wir davon ausgehen, dass die bemerkenswertesten Veränderungen im Baumgrenze-Ökoton mit einer Waldausdehnung zusammenhängen. Die räumliche Verteilung und der aktuelle Zustand der Baum-AGB wurden anhand von AGB-Felddaten, aus Landsat-Satellitendaten extrahierten AGB und einem Satellitenbild mit hoher räumlicher Auflösung und dadurch sichtbaren Einzelbäumen validiert. Die Simulationsergebnisse deuten auf Unterschiede in der Baum-AGB-Dynamik in Abhängigkeit von der Entfernung zur aktuellen Baumgrenze hin. Die simulierte Baum-AGB-Dynamik stimmt mit grundlegenden ökologischen (Auswanderungs- und Sukzessions-) Prozessen überein: die simulierte Baumbestandsentwicklung fängt mit Samenverbreitung an, Schaffung des Baumbestands, Baumbestand Verdichtung und episodische Verdünnung. Unsere Ergebnisse weisen auf eine Verdichtung des bestehenden Baumbestandes im Laufe dieses Jahrhunderts hin in der Untersuchungsregion, und auf eine zeitlich verzögerte Waldverbreitung (bis zu 39% der Fläche im RCP 8.5) unter allen betrachteten Klima-Szenarien ohne Abkühlung in verschiedenen lokalen Bereichen, abhängig von der Nähe zur heutigen Baumgrenze. In Szenarien mit Abkühlung nach 2300 CE beenden die Wälder ihre Ausbreitung um 2300 CE; bis zu 10%, RCP 8.5) um dann graduell zu ihrer vor 21. Jhd. Position zurückzuweichen. Die gemittelten Änderungsraten der Baum AGB sind am höchsten in den ersten 300 Jahren des 21. Jahrhunderts. Die Änderungsraten hängen ab von dem RCP Szenarium, mit den höchsten Änderungsraten unter RCP 8.5, wie zu erwarten war. Insgesamt zeigt diese interdisziplinäre Arbeit eine erfolgreiche Integration von Felddaten, Satellitendaten und Modellen zur Verfolgung der aktuellen und vorhergesagten zukünftigen Vegetationsänderungen in subarktischen Gebirgsregionen. Die erzielten Ergebnisse sind einzigartig für den Schwerpunktbereich in Zentral-Tschukotka und insgesamt für Gebirgsregionen in den hohen Breiten. T2 - Aktuelle und zukünftige Vegetationsveränderung in der Baumgrenzenregion von Chukotka (Nordost-Russland), abgeleitet aus Felddaten, Satellitendaten und Modellierung KW - plant ecology KW - vegetation change KW - Chukotka vegetation KW - above-ground biomass KW - land-cover classification KW - LAVESI KW - tree infilling KW - shrubification KW - subarctic vegetation change KW - treeline KW - tundra-taiga KW - Larix cajanderi KW - Vegetation von Tschukotka KW - oberirdische Biomasse KW - Klassifikation der Landbedeckung KW - Pflanzenökologie KW - Vegetationsveränderungen in der Subarktis KW - Waldausdehnung KW - Vegetationsveränderungen KW - Baumgrenze KW - Tundra-Taiga Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548452 ER -